

Benha University Faculty of Science

Applied Physics B.Sc. Program

2015/2016

Applied Physics B.Sc. Program Specification

A. Basic Information

Program Title:	Applied Physics B.Sc. Program
Program Type:	Major
Department Responsibility:	Physics Department
Coordinator:	Ass, Prof. Mahmoud H. Makled
Internal Evaluator:	Professor : Efit Eshaaq
External Evaluator:	Professor: Tawfik A. Eldesoky

Assistant Co-ordinator: Name/s of assistant coordinator/s.

Dates of program specifications approval: 9/12/2015

B. Professional Information

1. Program Aims

The special physics program is an academic program produced by Physics Department. It aims to introduce knowledge, experience and practices in Physics ,thus:

The overall aims are to provide the graduate with the following

- a) The role of Physics and Basic Science in the development of society
- b) Physical facts and theories to analyze and interpret practical data
- c) Fundamental ideas about the physical behavior of matter and energy to system's structure and function.
- d) Scientific information and applications in the most of physical branches specially in applied physics area, such as radiation physics, Crystal structure, Nano materials. Semicounductors and optical electronics
- e) Classification and identification the materials or physical phenomena according physics guidelines and Collection, analyses, and presentation of data using appropriate formats and techniques.
- f) Graduates are expected to become investigators in industrial or research institutions, scientific reporters, technical consultants, employed in information technology companies, educational institutions and health care organizations

- g) Application of physics principles on modern areas of physics research and to choose appropriate solutions to solve problems on scientific basis
- h) How to develop communication, writing and scientific presentation skills

2. Intended Learning Outcomes (ILO's)

2.1 Knowledge and Understanding

By the end of the program, the graduate will be able to:

- a.1 Investigate the physical facts of (matter, fluids, optics, energy, nuclear and other physical branches), physical concepts of (thermodynamics, electromagnetism and most of physical phenomena), physical principles and techniques.
- a.2 Select and use some of special functions, equations and computer programs to solve the related physical problems according to classical and quantum physics
- a.3 Describe the relation between structure, composition and Physical properties
- a.4 Identify the theoretical and practical aspects of atomic, biophysics, solid state and other related branches in addition to physical phenomena, systems and applications.
- a.5 Memorize the processes and mechanisms supporting the structure, and Physical properties of matter and physical systems.
- a.6 Define microscopic and macroscopic studies for different physical area and physical problems
- a.7 Understand the advanced theories, models, methods and techniques to interpret and analyze data, related to the physical discipline.
- a.8 Understand the essential facts, major concepts, principles, and theories in most basic sciences branches and other sciences to understand the recent advances in Physics

2.2 Intellectual Skills

By the end of the program, the graduate will be able to:

- b.1 Differentiate between the different states of the matter, elements and compounds based on the recognition and quantification of the properties.
- b.2 Organize spacial function, equation, models and programs to exam the validity of the physical laws and analyze system components.
- b.3 Interpret and analyze the practical data and physical properties qualitatively and quantitavely.
- B.4 Solve the physical problems by the appropriate judgments in accordance with physical theories and concepts to choose optimum solutions.

- b.5 Confirm the suitable technique to study crystal structure, fluid mechanics, plasme systems, digital networks. and any physical topic, system and phenomena
- b.6 Modify most of the physical properties of different materials by the modification of structure, composition and synthesis method.

2.3 Skills

2.3.1 Professional and Practical Skills

By the end of the program, the graduate will be able to:

- c.1 Sketch and prepare the physical systems, techniques and data considering physical guidance
- c.2 Analyze the computational programs to interpret the physical and mathematical problems
- c.3 Summarize the practical data according to national standard
- c.4 Collect comprehensive physical knowledge and intellectual skills to solve the physical problems by acceptable methods in research tasks.
- c.5 Judge to apply physics principles and mathematical tools to modern areas of physics research.
- c.6 Able to conduct experiments, techniques and report the theoretical and experimental results in the understandable forms such as tables and graphs.

2.3.2 General Skills

By the end of the program, the graduate will be able to:

- d.1 Use computers and internet for communication, data handling and word processing.
- d.2 Communicate to work efficiently in a team or separately
- d.3 Solve physical problems on scientific basis.
- d.4 Effectively manage tasks, time, and resources.
- d.5 Search for information and engage in life-long self learning discipline.
- d.6 Able to perform, read and interpret scientific literature

3- Academic standards of the program

The program outcomes are derived from National Academic Reference Standards (NARS) for Single programs in Science Faculties (Physics).

4- Reference indices (Benchmarks)

4.1 The program outcomes are derived from National Academic Reference Standards (NARS) for single programs in Science Faculties (Physics).

5- Program structure and contents a- Program duration: four levels (8 semesters) b- Program structure:

Program	Credit hours
Compulsory	118
Optional	18
Elective	4
Total	140

Program	Credit hours	Percentage
Basic sciences	33	23.57 %
Humanities (including language)	5	3.57 %
Specialized courses	97	69.29%
Computer and IT	5	3.57%
Total	140	100 %

d- Program Courses:

• Symbols in the list and their meanings

Connotation	Symbol
University require-	Ur
ment	UI
Faculty requirement	Fr
Botany	В
Chemistry	Ch
Entomology	Е
Geology	G
Mathematics	М
Physics	Ph
Zoology	Z

University requirements

The student studies (8 credit hours) at First level

Code	Course Title	No.	No. of			Level
No.		of Unita	hours/Week			
		Units	Lect	Ex-	Prac	
			•	er.	•	
015 Ur	English (1)	2	2	-	-	first
030 Ur	Computer Science (1)	3	2	-	2	first
040 Ur	Computer Science (2)	2	1	-	2	first
050 Ur	Human Rights	1	1	I	-	first

B-Faculty requirements

B1-Compulsory courses

The student studies (18 credit hours) at First level

100 M	General Mathematics (1)	3	2	2	-	first
105 M	General Mathematics (1)	3	2	2	-	first
100 Ph	General Physics (1)	2	2	-	-	first
180 Ph	Practical Physics (1)	1	-	-	3	first
105 Ph	General Physics (2)	2	2	1	-	first
181 Ph	Practical Physics (2)	1	-	-	3	first
100 Ch	General Chemistry (1)	2	2	1	-	first
180 Ch	Practical Chemistry (1)	1	-	-	3	first
105 Ch	General Chemistry (2)	2	2	1	-	first
181 Ch	Practical Chemistry (2)	1	_	-	3	first

B2-Elective courses:

The student studies (6 credit hours) at First level,

183 Ch	Inorganic applied Chemis- try(1)	1	-	2	-	first
183 Ph	Applied Physics (1)	1	-	2	-	first
185 Ch	organic applied Chemistry (2)	1	-	2	-	first

185 Ph	Applied Physics (2)	1	-	2	-	First
100 Z	General Zoology (1)	2	1	-	2	first
105 Z	General Zoology (2)	2	1	-	2	first
100 B	General Botany (1)	2	1	-	2	first
105 B	General Botany (2)	2	1	-	2	first
100 G	General Geology (1)	2	1	-	2	first
105 G	General Geology (2)	2	1	-	2	first
111 IN	General Insects (1)	2	1	-	2	first
112 IN	General Insects (1)	2	1	-	2	first
11 Ur	Healthy Nutrition	2	2	-	-	first
12 Ur	History of Sciences	2	2		-	first
13 Ur	Healthy nutrition	2	2	-	-	first
14 Ur	Scientific thinking	2	2	-	-	first
17 Ur	Labor Law	2	2	-	-	first
19 Ur	Selected subjects from Egypt history	2	2	-	-	first

Second level courses

	Compulsory courses in First Semester							
223 Ph	Thermodynamics.	3	2	2	-	Second		
261 Ph	Electricity, magnetism and AC current	3	3	1	_	Second		
271 Ph	Physical Optics and optical fibers	3	3	-	-	Second		
275 Ph	Thermodynamics and optics lab.	2	-	-	4	Second		
211 M	Advanced calculus	3	2	2	-	Second		
Elective one course in First Semester								
251 M	object programming	3	2	2	-			

323 M	Numerical Analysis	3	3		-			
		17	Total credit hours					
	Compulsory courses in Second Semester							
212 Ph	waves and oscillations	3	2	2	_	Second		
215 Ph	Modern physics	3	2	2	_	Second		
256 Ph	Metals, alloys and ceramic physics	3	3	-	_	Second		
265 Ph	Electricity, magnetism and AC current lab	2	-	-	4	Second		
212 M	Differential equation (1)	3	2	2	-	Second		
Elective one course in second Semester								
361 M	Logic circuts	3	2	2	-			
323 M	Numerical Analysis	3	3		-			
		17	r	Fotal c	redit h	ours		

Third Level Courses

Compulsory courses in First Semester								
311 APh	Electronic Quantum mechanics (1)	3	2	2	-	Third		
313 APh	Bio physics of cell	3	3	-	-	Third		
315 Ph	Modern Physics lap (1)	2	-	-	4	Third		
353 Ph	Solid state (1)	3	3	-	-	Third		
355 Ph	Solid state lap. (1)	1	-	-	3	Third		
361 APh	Digital Electronics (1)	3	3	-	-	Third		
	Elective one course in first semester							
323 M	Numerical Analysis	3	3		-			
357 M	Data Base	3	2	2	-			
		18	Total credit hours					

		18 Total credit hours				
354 M	Computer network	3	2		2	
332 Ch	Surface chemistry, catalysis, colloids, and solid state	3	3		-	
Elective one course in Second Semester						
382 Ph	Astrophysics	3	3	-	-	Third
365 APh	Electronics Lab (1)	1	-	-	3	Third
354 APh	Physics health and radiation protection	3	3	-	-	Third
345 Ph	Nuclear Physics Lap (1)	1	-	-	3	Third
342 Ph	Nuclear Physics (1)	3	3	-	-	Third
332 Ph	Plasma physics and applications	3	3	-	-	Third
312 APh	Theory of electromagnetism and electrodynamics	3	3	1	-	Third
Compulsory courses in Second Semester						

Fourth level courses

Compulsory courses in First Semester						
411 APh	Material quantum mechanics	3	3	-	-	Fourth
443 APh	Experimental Methods	3	3	-	-	Fourth
451 APh	Physics of semiconductors systems		3	-	-	Fourth
453 Ph	53 Ph Magnetic resonance and spec- tral Mossbauer		3	-	-	Fourth
455 APh	Ph Semiconductor Lab		-	-	3	Fourth
457 APh	APh Communication physics		3	I	-	Fourth
	Elective one course in First semester					
491 APh	Selected subject in physics (1)	3	3	-	-	
419 M	Mathematical analysis	sis <u>3</u> <u>2</u> <u>2</u>				
	19 Total credit hours					

	Compulsory courses in Second Semester					
400 APh	Research and Essay	2	2	-	-	Fourth
414 APh	Environmental physics	3	3	-	-	Fourth
422 Ph	422 Ph Low temperature and super- conductors		3	-	-	Fourth
432 APh	432 APh Introduction to energy science			-	-	Fourth
458 Ph	58 Ph Nano materials physics and application		3	-	-	Fourth
472 APh	472 APh Physics of Optical electronics		3	-	-	Fourth
	Elective one course in Second Semester					
462 PhMathematical physics using computer3			3	1	-	Fourth
492 APh	APh Selected subject in physics (2) 3 3					
	19 Total credit hours					

Contents of the Courses

See course specification forms

6-

7- Program admission requirements

- Faculty of Benha Science accepts students who have a high school (the scientific branches) or equivalent according to the admission requirements specified by the Supreme Council of Universities.
- Faculty of Benha Science accepts transfer students from other science faculties; provided that the number of credit hours that were studied not more than 50% of the total number of credit hours necessary for his graduation. The student is exempt from the courses studied by successfully whatever their level.

8- Regulations for progression and program completion:

According to the bylaw of the faculty of Benha Science, the regulations for progression and program completion in any discipline single or double requirement is 140 credit hours at least distributed as follows: -

(1) University requirements for a bachelor's degree in any single discipline or double 8 credit hours is mandatory.

(2) The total requirements for a bachelor's degree in any single discipline or a double is 24 credit hours, including 18 compulsory hours +6 optional hours.

(3) Specialty requirements for a bachelor's degree in any single discipline or a double is determined by Section 108 certified or relevant departments to specialize hour.

(4) leads college students summer training for six weeks in the relevant areas of specialization Applied before graduation to not be training only after the student completed 90 credits at least an hour and do not count him credit hours.

(5) Scientific field trips serve the area of specialization.

• Joining the Program:

A - Vice Dean for Education and Student Affairs supervises on the implementation of the registration rules and procedures and prepare menus for each of the study groups, schedule, distribute students gentlemen academic advisers, processing cards courses for students which is about cards individual for each course as well as cards total for each student, that academic record data in accredited private records, and the completion of enrollment of students in the first week of the start of the semester.

B - Students may register early, after announcing the results of the end of the spring.

C - Take into account when you log decision student success in Prerequisite if any.

D - A student who was not able to register for compelling reasons approved by the

Student Affairs Committee and approved by the College Board to register record late in the additional period for registration (the second week).

E - Student selects one branch to research and essay from two specialized branches.

Study load:

Students are allowed to register in at least 14 credit hours and no more than 19 credit hours per semester. With the exception of the following cases:

A - A student can superior (who has a cumulative average of 3 or more) that adds to it two hours, certified in one semester and a maximum of 8 credit hours throughout the study period in decisions, additional optional requirements, specialization departments, college different, that is added appreciation where to CGPA It is not permitted to be an elective requirement for another decision.
B-The College Board may increase the maximum for the academic workload in the last semester of the student up to a maximum of four credit hours to complete graduation requirements.
C - Not allows the student who has a cumulative rate (1) to register in more than 12 credit hours in a semester.

Additions, deletions, withdraw and modify the path:

A - Any student after the approval of the academic advisor to add or delete scheduled or two until the end of the second week only study and without prejudice to the burden stipulated.
 B - Student may withdraw from the study any decision until the end of the seventh week of the start

of registration for the semester with the approval of the academic advisor. The record of this decision in the student's academic record estimate "withdrawn" on the condition that the student does not have absenteeism overruns before the with-11drawal. And cases before the forced withdrawal

over this period the Commission Education and Student Affairs for consideration and approval of the Faculty Council on the withdrawal shall be without prejudice boarding school student.

C - A student may alter the course of the specialization subject to the completion of the requirements of specialization desirable and not counting credit hours, which the student obtained by not located in the area of the requirements of the new specialization and after the approval of the academic advisor and the Committee on Education and Student Affairs and the College Board on this amendment.

Stop registration or drop out

A - Stop registration: the student can apply to stop his registration for one semester and a maximum of four separate classes are connected and for compelling reasons approved by the College Board. B - Dropout: the student can re-record if he dropouts for maximum two semesters and for compelling reasons approved by the College Board.

Attendance:

A - The instructor shall register the presence of students at the start of each lecture theory or process in a practical period Prepared for by the Student Affairs and delivers this record at the end of the semester to manage the affairs of Students.

B - When the student exceeds the absence of 10% of the scheduled hour's instructor shall notify the Department of Affairs Students to guide the first warning to the student.

C - When the student exceeds the proportion of the absence of 20% of the scheduled hour's instructor shall notify the Department Student Affairs to direct second and final warning to the student.

D - If increased absenteeism 25% of the total scheduled hours and the absence of a student without an acceptable excuse Student Affairs Committee and approved by the College Board, student records estimate" deprived" decision and intervention as a result of failure to calculate the cumulative average of the student.

E - If increased absenteeism was 25% and the absence of the student excuse acceptable to the Commission, Education and Student Affairs and approved by the College Board, student records withdraw from the course.

F - In the case of a request student add a new decision attendance is calculated from the date of registration.

9- Methods and rules of evaluation of students in rolled in the program:

Rating:

The exam is evaluated each courses at 100 degrees and distributed degrees scheduled as follows:

9.1 courses which did not include the part "practical"

Method of Assessment	Weighting	learning outcomes assessed
Mid term exam & Semes- ter work	10%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.

Final Oral Exam	10 %	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final Term Examination	80%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.

9.2 courses practical separate

Method of Assessment	Weighting	learning outcomes assessed
Mid term exam & Semester work	20%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final Oral Exam	20 %	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final practical Examination	60%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.

9.3 courses which include part "practical"

Method of Assessment	Weighting	learning outcomes assessed
Mid term exam & Semester work	16%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final Oral Exam	12 %	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final practical Examination	24%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final Term Examination	48%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.

9.4 Course search and essay

A - 60% of the total score for the course of the various activities carried out by the student during his study of the course.

B- 40% of the total scores for the course of the 13 discussion session

e. Estimated grades and points obtained by the student in each course as follows:

Grade	Symbol	Number of points	Mark
Eveellent	Α	4	90-100%
Excellent	Α-	3.7	85-<90%
Vory good	B+	3.3	80-<85%
Very good	В	3	75-<80%
Good	В-	2.7	70-<75%
GUUU	C+	2.3	65-<70%
Pass	С	2	60-<6 5%
Failed	F	0	<60%
Absent	F-	0	-

10- Learning resources:

a- Adequacy of laboratories:

The department has 6 student labs which are relatively enough in proportion to the number of students.

- Infra Structure:

- The faculty begin preparing the infra structure of the department through renewing the four student labs exist in the 4st floor of the Physics department. The plan of refurbishing based on repairing the damaged benches Floors and windows, painting walls providing labs with electric fans and enough lights. In addition to replacing the old wallboard into modern one and provide labs with new instruments.

b- Adequacy of Computer facilities

Some of the stuff member's rooms need new PCs.

e- Adequacy of field/practical training resources:

The department arranges 1 Week scientific trip for 3th Year students.

There is summer training by the department itself, and the department provides some students of the third year the chance for summer training at related companies. Some staff members

provide students the chance to get their summer training at their labs.

b- Matching of the faculty members specialization to program needs:

Specification Area Status

Gogood enough.

c- availability and adequacy of program handbook:

Available: √	Not Available
d- Adequacy of library facilities:	
Adequate: 🗸	Not adequate
e- Adequacy of laboratories:	
Adequate: √	Not adequate
f- Adequacy of computer facilities:	
Adequate: √	Not adequate
g- Adequacy of field/practical training resources:	
Adequate: $$	Not adequate

<u>11- Quality Management</u>:

a- effectiveness of the system:	Effective: $$	Not effective:			
b- Effectiveness of Faculty and University laws and regulations for progression and					
completion:	Effective: $$	Not effective:			
c- Effectiveness of program external evaluation system:					
i- External evaluators:	Effective: $$	Not effective:			
ii- Students:	Effective: $$	Not effective:			
iii- Other stallholders:	Effective:	Not effective:			

d- Faculty response to student and external evaluations:

Most comments and suggestions of the students and external evaluations were discussed several times during faculty meetings and reviewed by the course instructors and are applied into the action plan for the next academic year.

12- Proposal for program development

ment

Benha University Faculty of Science Department of Physics

a- Program structure (units/credit hours): credit hours

b- Courses, deletion, additions and modifications: provided in the action plan for the next year

c- **Staff development requirements**: More facilities for different laboratories and resources for the library are required.

I- Physics department Plans

Task Sectors **Progress of action** Head of Physics Curriculum has to be in credit hours system has department and all courses started by the academic year the credit hours system instructors 2010/2011 to give the student the opportunity to choose what they like in the proper time. Refurbishing of three labs in Head of Physics The four labs were renewed the department through painting, repairing the damaged floors, benches 4st floor (fore students and one in the 5^{th} floor) and windows and are ready to be used. Head of Physics Purchase some new experi-Several suction and aeration mental department systems were purchased tools, materials as well as, new scientific systems Purchase some new instru-Head of Physics Electrochemical test station Department_and ments: and buttery analyzer Dr. Islam Sheha Purchase data show and data show and white screen white board were purchased screen board for the depart-

13- Progress of the previous year's action plan:

In most cases the lecturer are	Department head and	Many of the courses
not using modern means and	All courses instructors	instructors prepared their
tools of interactive teaching		courses by power point data
		presentation
equipping Seminar halls with	Department head and	Offering data show
white boards, projectors or	All courses instructors	computers in the class rooms.
data show and computers.		Seminar hall not yet arranged
Enhancement of the student	Head of Physics	Some staff members provide
field training program	Department and all	students the chance to get
	department stuff members	their summer training at their
	_	labs.

<u>13- Next year action plan (2015-2016):</u>

<u>No.</u>	<u>Task</u>	Period	Sectors	Leading responsibility	Cost estimates	Risk Parameters
1	Development of courses: 1- Contents 2- Notes 3- Laboratory equipment's	one year	-All depart- ment Stuff mem- bers.	-Head of Physics Department	-	-
2	Physics work day	<u>One</u> <u>term</u>	-Head of Phys- ics Department -Prof, <u>Mo-</u> <u>hamed Ali</u>	Head of Phys- ics Department -Dean and vise Dean		No fund or insufficient fund
<u>3</u>	Refurbishing of solid state and Laser research lab	one year	-Head of Phys- ics Department -Prof <mark>.</mark> <u>Mahmoud</u> <u>Makled and</u> <u>Nabile henday</u>	-Head of Physics Department -Dean and vise Dean	100.000 LE	

II- Microbiology Department Plans:

13- Action plan:

Action required	Person Responsible	Completion date
Enrich the department	The library committee	During the second
library with more updated	assigned by the	semester of the academic
text books recommended by	department head and	year 2015-2016
the courses instructors.	faculty members	
contact with several civilian	Department head and	Academic year 2014-2015
society organization for the	Dr <mark>.</mark> Mohamed Abed	And 2015-2016
summer training	Elmenem	
	All courses instructors	
Increase the number of	Department head and	Second term Academic year
experiments to conduct	All courses instructors	2014-2015
several the market		
Update the practical	All courses instructors	Started by the academic
training sections and		year of 2011-2012
courses to go hand in hand		
with needs of the local		
market		
Purchase new tools	Prof Dr. Mahmoud Makled	Several exepriments
for the laboratory uses for		were purchased in the
the undergraduates of the		academic year 2015-2016
Applied physics program		

Fix new white boards in the student labs	Department head and All courses instructors	New white boards will be fixed by the beginning of the academic year of 2013- 2014
Renew the preparation De- partment head and By the be- ginning of experimental room of the department	Department head and Faculty instructors	By the beginning of academ- ic year of
Department offer question banks for the students in all courses	Department head and All courses instructors	By the end of the academic year 2015-2016
The Department offer Student text books for some courses (Genetics)	All of the stuff	By the end of the academic year 2015-2016
Some courses need to be updated their code and pre- requisite courses	Department head and All courses instructors	By the end of the academic year 2015-2016
Some courses should be as electronic version and on line.	Department head and All courses instructors	By the beginning of the academic year 2016/2017
Constructing the Electronic herbarium of the Department	Head of the Department Dr . Mohamed Ali Dr . Tarek Yosef	By the end of the academic year 2015/2016

Program Coordinators: Prof. Mahmoud H. Makled

Head of the Physics Department: Prof. Mervat Gamal Sharawy

11- Methods of program evaluation:

Evaluator	Tool	Sample
1- Senior Students	Questionnaire	Not less than 25%
2- Alumni	Questionnaire	Not less than 25%
3- Stakeholders	Questionnaire, workshops, seminars,	Representative for all sectors
	conferences	
4- External Evaluators	Reports	Report 1-2
5- Internal Evaluators	Reports	Report 1-2

National Academic Reference Standards (NARS)

Basic Sciences

I. National Academic Reference Standards

1. National Academic Reference Standards

1.1. General Attributes of the Graduates of Basic Sciences The graduates must be able to:

1 1 December the sele of Decis Colonnes in the decel

- 1.1.1. Recognize the role of Basic Sciences in the development of society.
- 1.1.2. Develop scientific approaches that meet community needs considering economic, environmental, social, ethical, and safety requirements.
- 1.1.3. Utilize scientific facts and theories to analyze and interpret practical data.
- 1.1.4. Collect, analyze, and present data using appropriate formats and techniques.
- 1.1.5. Postulate concepts and choose appropriate solutions to solve problems on scientific basis.
- 1.1.6. Apply effectively information technology relevant to the field.
- 1.1.7. Participate effectively in a multidisciplinary teamwork and be flexible for adaptation, decision making and working under contradictory conditions as well as exhibiting the sense of beauty and neatness.
- 1.1.8. Adopt self and long life-learning and participate effectively in research activities.
- 1.1.9. Deal with scientific data in Arabic, English or other languages.

1.2. Knowledge and Understanding

Graduates must acquire knowledge and understanding of:

- 1.2.1. The related basic scientific facts, concepts, principles and techniques.
- 1.2.2. The relevant theories and their applications.
- 1.2.3. The processes and mechanisms supporting the structure and function of the specific topics.
- 1.3. The related terminology,₂₀ nomenclature and classifica-

tion systems.

- 1.2.4. The theories and methods applied for interpreting and analyzing data related to discipline.
- 1.2.5. The developmental progress of the program-related knowledge.
- 1.2.6. The relation between the studied topics and the environment.

1.3. Practical and Professional Skills

The graduates must be able to:

- 1.3.1. Plan, design, process and report on the investigated data, using appropriate techniques and considering scientific guidance.
- 1.3.2. Apply techniques and tools considering scientific ethics.
- 1.3.3. Solve problems using a range of formats and approaches.
- 1.3.4. Identify and criticize the different methods used in addressing subject related issues.

1.4. Intellectual Skills

The graduates must be able to:

- 1.4.1. Differentiate between subject-related theories and assess their concepts and principles.
- 1.4.2. Analyze, synthesize, assess and interpret qualitatively and quantitatively science relevant data.
- 1.4.3. Develop lines of argument and appropriate judgments in accordance with scientific theories and concepts.
- 1.4.4. Postulate and deduce mechanisms and procedures to handle scientific problems.
- 1.4.5. Construct several related and integrated information to confirm, make evidence and test hypotheses.

1.5. General and Transferable Skills

The graduates must be able to:

- 1.5.1. Use information and communication technology effectively.
- 1.5.2. Identify roles and responsibilities, and their performing manner.

- 1.5.3. Think independently, set tasks and solve problems on scientific basis.
- 1.5.4. Work in groups effectively; manage time, collaborate and communicate with others positively.
- 1.5.5. Consider community linked problems, ethics and traditions.
- 1.5.6. Acquire self- and long life-learning.
- 1.5.7. Apply scientific models, systems, and tools effectively.
- 1.5.8. Deal with scientific patents considering property right.
- 1.6.9. Exhibit the sense of beauty and neatness

2. National Academic Reference Standards for Physics

Physics is the study of energy and behavior of single atom and its components. Physics is the foundation upon which the other physical sciences are based such as; astronomy, chemistry and geology. The beauty of physics lies in the simplicity of the fundamental physical theories and assumptions that can alter and expand our view of the world around us. Like all sciences, physics is based on experimental observations and quantitative measurements. The main objective of physics is to use a limited number of fundamental laws that govern natural phenomena to develop theories that can predict the results of future experiment.

Physicists are expected to become investigators in industrial or research institutions. They can also have careers as air navigators and instrument manufacturers, scientific reporters, technical consultants and university staff members. They can also be employed in information technology companies, educational institutions and health care organizations.

2.1. The Attributes of a Physicist

In addition to the general attributes of basic sciences graduates, the physics graduates must be able to:

2.1.1. Demonstrate a good basic knowledge of structural and functional aspects of physical systems 22 at many spatial scales,

from single molecule to the whole system.

2.1.2. Connect fundamental ideas about the physical behavior of matter and energy to system's structure and function.

2.2. Knowledge and Understanding

In addition to the general knowledge acquired by Basic Sciences graduates, the physics graduates must know and understand the:

- 2.2.1. Characteristics and physical properties of matter.
- 2.2.2. Static and dynamic properties of fluids.
- 2.2.3. The Basics of Electricity.
- 2.2.4. Concepts of electromagnetism.
- 2.2.5. Principles of heat transfer and thermodynamics.
- 2.2.6. Theoretical and practical aspects of optics, nuclear physics and other related branches.
- 2.2.7. Application of advanced physical techniques.
- 2.2.8. Basics and mechanisms of energy transfer.

2.3. Practical and Professional skills

In addition to the general skills acquired by Basic Sciences graduates, the physicist must be able to:

- 2.3.1. Apply mathematical tools and techniques to analyze and interpret experimental results.
- 2.3.2. Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.
- 2.3.3. Use the national standards for laboratory equipment which are essential for practical research work.

2.3.4. Present theoretical and experimental results in understandable forms such as tables and graphs.

2.4. Intellectual skills

In addition to the general skills acquired by Basic Sciences graduates, the physicist must be able to:

- 2.4.1. Utilize theories of physics to interpret physical phenomena.
- 2.4.2. Apply appropriate physical principles to create and analyze system components.
- 2.4.3. Choose optimum solutions for physical problems based on analytical thinking.

Program Matrixes

Faculty mission vs. Applied Physics program design matrix

I. Program attributes vs. faculty mission

		Faculty mission The Faculty of Science, Benha University, confesses and admits to:					
Program Aims: The overall aims of the pro- gram are to provide the graduate with:		promote a distinct graduate who will be able to conduct research and inno- vation that will help him in the labor market com- petition, taking into account the ethics of the pro- fession,	conduct high- value scien- tific research that deserves regional and international awareness	recruit human resources and applied research to provide train-			
а	The role of Physics and Basic Sciences in the development of society	\checkmark		\checkmark			
b	Physical facts and theories to analyze and interpret practical data		\checkmark				
с	Connect Fundamental ideas about the physical behavior of matter and energy to system's structure and function.	\checkmark	\checkmark				

d	Scientific information and applications in the most of physical branches specially in applied physics area, such as radiation physics, Crystal structure, Nano materials. Semicounductors and optical electronics	\checkmark	\checkmark	\checkmark
e	Classification and identification the materials or physical phenomena according physics guidelines and Collection, analyses, and presentation of data using appropriate formats and .techniques	\checkmark	\checkmark	
f	Graduates are expected to become investigators in in- dustrial or research institu- tions, scientific reporters, technical consultants, em- ployed in information tech- nology companies, educa- tional institutions and health care organizations	\checkmark	\checkmark	\checkmark
g	Application of physics prin- ciples on modern areas se appropriate solutions to solve pof physics research and to chooroblems on scientific basis	\checkmark	\checkmark	
.h	How to develop communica- tion, writing and scientific presentation skills		\checkmark	

II.Program Intended Learning Outcomes(ILOs) vs. the faculty mission

a) Knowledge and Understanding

		Faculty mission The Faculty of Science, Benha University confesses and admits to:					
Program Aims: The overall aims of the pro- gram are to provide the graduate with:		promote a distinct graduate who will be able to conduct research and in- novation that will help him in the labor market competition, tak- ing into account the ethics of the profession,	value scientific research that deserves re- gional and in-				
a.1	Investigate the physical facts of (matter, fluids, op- tics, energy, nuclear and oth- er physical branches), physi- cal concepts of (thermody- namics, electromagnetism and most of physical phe- nomena), physical princi- ples and techniques.	√					
a.2	Select and use some of spe- cial functions, equations and computer programs to solve the related physical problems according to classical and quantum physics			\checkmark			
a.3	Describe the relation be- tween structure, composition and Physical properties		\checkmark				

a.4	Identify the theoretical and practical aspects of atomic, biophysics, solid state and other related branches in ad- dition to physical phenome- na, systems and applications.			
a.5	Memorize the processes and mechanisms supporting the structure, and Physical properties of matter and physical systems.	\checkmark	\checkmark	\checkmark
a.6	Define microscopic and mac- roscopic studies for different physical area and physical problems		\checkmark	\checkmark
a.7	Understand the advanced theories, models, methods and techniques to interpret and analyze data, related to the physical discipline.		\checkmark	
a.8	Understand the essential facts, major concepts, princi- ples, and theories in most basic sciences branches and other sciences to understand the recent advances in Phys- ics	\checkmark	\checkmark	\checkmark

b) Intellectual Skills

Program Aims: The overall aims of the pro- gram are to provide the graduate with:		Faculty of Confest promote a distinct graduate who will be able to conduct research and inno- vation that will help him in the la- bor market compe- tition, taking into account the ethics of the profession,	na University,	
b.1	Differentiate between the different states of the mat- ter, elements and com- pounds based on the recognition and quantifica- tion of the properties.	√		velopment
b.2	Organize special func- tion, equation , models and programs to exam the validity of the physical laws and analyze system components.	\checkmark	\checkmark	
b.3	Interpret and analyze the practical data and physical properties qualitatively and quantatively.		\checkmark	

b.4	Solve the physical problems by the appropriate judgments in accordance with physical theories and concepts to choose .optimum solutions	\checkmark		
b5.	Confirm the suitable tech- nique to study crystal structure, fluid mechanics, plasma sys- tems, digital networks. and any physical topic, system and phenomena	\checkmark		
b6.	Modify most of the physical properties of different materials by the modification of structure, composition and .synthesis method		\checkmark	

c) Professional and Practical Skills

		Faculty mission The Faculty of Science, Benha University, confesses and admits to:					
Program Aims: The overall aims of the pro- gram are to provide the graduate with:		promote a dis- tinct graduate who will be able to conduct re- search and in- novation that will help him in the labor market competition, taking into ac- count the ethics of the profes- sion,	conduct high- value scientific research that deserves region- al and interna- tional awareness and publication	recruit human resources and applied research to provide train- ing services and scientific consul- tation for envi- ronmental issues and society de- velopment			
c1.	Sketch and prepare the physi- cal systems, techniques and data considering physical guid- ance	\checkmark \checkmark		√ √			
c2.	Analyze the computational pro- grams to interpret the physical and mathematical problems	\checkmark	\checkmark	\checkmark			
с3.	Summarize the practical data according to national standard	\checkmark					
c4.	Collect comprehensive physical knowledge and intellectual skills to solve the physical problems by acceptable methods in re- search tasks.	\checkmark	\checkmark				
c5.	Judge to apply physics principles and mathematical tools to modern areas of physics research.	\checkmark	\checkmark				
C6.	Able to conduct experiments, techniques and report the theo- retical and experimental results in the understandable forms such as tables and graphs.	\checkmark					

d) General Skills

		Faculty mission							
		The Faculty of Science, Benha University,							
		confesses and admits to:							
Th gra	ogram Aims: e overall aims of the pro- am are to provide the aduate with:	promote a dis- tinct graduate who will be able to conduct re- search and in- novation that will help him in the labor market competition, taking into ac- count the ethics of the profes- sion,	research that deserves re- gional and in-	recruit human resources and applied research to provide train- ing services and scientific consul- tation for envi- ronmental issues and society de- velopment					
d1.	Use computers and internet for communication, data handling and word pro- cessing.		V						
d2.	Communicate to work effi- ciently in a team or separate- ly		\checkmark						
d3.	Solve physical problems on scientific basis.								
d4.	Effectively manage tasks, time, and resources.								
d5.	Search for information and engage in life-long self- learning discipline.	\checkmark	\checkmark						
d6.	Able to perform, read and interpret scientific literature	\checkmark	\checkmark						

Program aims of Applied Physics and attributes of graduate

in Applied Physics NARS matrix

Attr	Attributes of graduate in Applied Physics NARS		Program aims of Applied Physics							
		а	b	С	d	е	f	g	h	
1	Demonstrate a good basic knowledge of structural and functional aspects of physical systems at many spacial scales, from single molecule to the whole system	x			x	x				
2	Connect fundamental ideas about the physical behavior of matter and energy to system's structure and function			x		х				
3	Utilize scientific facts and theories to analyze and interpret practical data				х					
4	Apply effectively information technology relevant to the field							х		
5	Develop scientific approaches that meet community needs considering economic, environmental, social, ethical, and safety requirements						х		Х	
6	Collect, analyze, and present data using appropriate formats and techniques		х							
7	Adopt self and long life-learning and participate effectively in research activities						х			

NARS ILOs matrix&A	pplied Physic	s B.Sc. Program ILOs
		······································

Applied Physics B.Sc. NARS ILOs			Applied Physics B.Sc. Program ILOs							
Knowledge and Understanding		Knowledge and Understanding								
		a.1	a.2	a.3	a.4	a.5	a.6	a.7	a.8	
1	Characteristics and physical properties of matter.	х		х		х				
2	Static and dynamic properties of fluids.	х					х			
3	The Basics of Electricity.	х					х			
4	Concepts of electromagnetism.	х								
5	Principles of heat transfer and thermodynamics.	х								
6	Theoretical and practical aspects of optics, nuclear physics and other related branches.				x		х	x	х	
7	Appli Application of advanced physical techniques.		Х			Х		Х	х	
8	Basics and mechanisms of energy transfer 2.2.8.	Х			Х		Х			

Applied Physics B.Sc. NARS ILOs Applied Physics B.Sc. Program				ogram I	ILOs				
Intellectual Skills		Intell	Intellectual Skills						
		b.1	b.2	b.3	b.4	b.5	a.6		
1	Utilize theories of physics to interpret physical phenomena.	x				x			
2	Apply appropriate physical principles to create and analyze system components.		x				x		
3	Choose optimum solutions for physical problems based on analytical thinking.			x	x				
Ар	Applied Physics B.Sc. NARS ILOs Applied Physics B.Sc. Prog ILOs		Program	n					
Professional and Practical Skills		Pro	Professional and Practical Skills						

		C.	1	c.2	c.3	c.4	c.5	c.6
1	Apply mathematical tools and techniques to analyze and interpret experimental results.	х		х				
2	Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.					x	x	
3	Use the national standards for laboratory equipment which are essential for practical research work.				х			
4	Present theoretical and experimental results in understandable forms such as tables and graphs.							х
Арр	lied Physics B.Sc. NARS ILOs	Appl	ied	Physi	ics B.S	ic. Prog	gram I	LOs
General Skills General Skills								
		d.1	d	.2	d.3	d.4	d .5	d.6
1	Use information and communication technology effectively.	х						
2	Identify roles and responsibilities, and their performing manner.							х
3	Think independently, set tasks and solve problems on scientific basis.				х			

35

4	Work in groups effectively; manage time, collaborate and communicate with others positively.	х	х		
5	Consider community linked problems, ethics and traditions.				
6	Acquire self- and long life–learning			Х	

Program Coordinator: Name: Ass. Prof. Mahmoud Hosseny Makled	Signature:	Date:
Head of the Department: Name: Prof. Dr. Mervat Gamal Elsharawy	Signature:	Date:

36

Benha University Faculty of Science

Special Physics B.Sc. Program

2015/2016

Special Physics B.Sc. Program Specification

A. Basic Information

Program Title:	Special Physics B.Sc. Program				
Program Type:	Major				
Department Responsibil	lity: Physics Department				
Coordinator:	Ass, Prof. Mahmoud H. Makled				
Internal Evaluator:	Professor : Efit Eshaaq				
External Evaluator:	Professor: Tawfik A. Eldesoky				

Assistant Co-ordinator: Name/s of assistant coordinator/s.

Dates of program specifications approval: 9/12/2015

B. Professional Information

1. Program Aims

The special physics program is an academic program produced by Physics Department. It aims to introduce knowledge, experience and practices in Physics ,thus: The overall aims are to provide the graduate with the following

- a) The role of Physics and Basic Sciences in the development of society
- b) Physical facts and theories to analyze and interpret practical data
- c) Fundamental ideas about the physical behavior of matter and energy to system's structure and function.
- d) Scientific information and applications in the most of physical branches
- e) Classification and identification the materials or physical phenomena according physics guidelines and Collection, analyses, and presentation of data using appropriate formats and techniques.
- f) Graduates are expected to become investigators in industrial or research institutions, scientific reporters, technical consultants, university staff members
- g) How to develop communication, writing and scientific presentation skills

2. Intended Learning Outcomes (ILO's)

2.1 Knowledge and Understanding

By the end of the program, the graduate will be able to:

- a.1 Investigate the physical facts of (matter, fluids, optics, energy, nuclear and other physical branches), physical concepts of (thermodynamics, electromagnetism and most of physical phenomena), physical principles and techniques.
- a.2 Select and use some of special functions, equations and computer programs to solve the related physical problems according to classical and quantum physics
- a.3 Describe the relation between structure, composition and Physical properties
- a.4 Identify the theoretical and practical aspects of atomic, biophysics, solid state and other related branches in addition to physical phenomena, systems and applications.
- a.5 Memorize the processes and mechanisms supporting the structure, and Physical properties of matter and physical systems.
- a.6 Define microscopic and macroscopic studies for different physical area and physical problems
- a.7 Understand the advanced theories, models, methods and techniques to interpret and analyze data, related to the physical discipline.
- a.8 Understand the essential facts, major concepts, principles, and theories in most basic sciences branches and other sciences to understand the recent advances in Physics

2.2 Intellectual Skills

By the end of the program, the graduate will be able to:

- b.1 Differentiate between the different states of the matter, elements and compounds based on the recognition and quantification of the properties.
- b.2 Organize spacial function, equation, models and programs to exam the validity of the physical laws and analyze system components.
- b.3 Interpret and analyze the practical data and physical properties qualitatively and quantitavely.
- b.4 Solve the physical problems by the appropriate judgments in accordance with physical theories and concepts to choose optimum solutions.
- b.5 Confirm the suitable technique to study crystal structure, fluid mechanics, plasme systems, digital networks. and any physical topic, system and phenomena
- b.6 Modify most of the physical properties of different materials by the modification of structure, composition and synthesis method.

2.3 Skills

2.3.1 Professional and Practical Skills

By the end of the program, the graduate will be able to:

- c.1 Sketch and prepare the physical systems, techniques and data considering physical guidance
- c.2 Analyze the computational programs to interpret the physical and mathematical problems
- c.3 Summarize the practical data according to national standard
- c.4 Collect comprehensive physical knowledge and intellectual skills to solve the physical problems by acceptable methods in research tasks.
- c.5 Judge to apply physics principles and mathematical tools to modern areas of physics research.
- c.6 Able to conduct experiments, techniques and report the theoretical and experimental results in the understandable forms such as tables and graphs.

2.3.2 General Skills

By the end of the program, the graduate will be able to:

- d.1 Use computers and internet for communication, data handling and word processing.
- d.2 Communicate to work efficiently in a team or separately
- d.3 Solve physical problems on scientific basis.
- d.4 Effectively manage tasks, time, and resources.
- d.5 Search for information and engage in life-long self learning discipline.
- d.6 Able to performer, read and interpret scientific literature

3- Academic standards of the program

The program outcomes are derived from National Academic Reference Standards (NARS) for Single programs in Science Faculties (Physics).

4- Reference indices (Benchmarks)

4.1 The program outcomes are derived from National Academic Reference Standards (NARS) for single programs in Science Faculties (Physics).

5- Program structure and contents

a- Program duration: four levels (8 semesters)b- Program structure:

Program	Credit hours
Compulsory	118
Optional	18 4

Elective	4
Total	140

Program	Credit hours	Percentage
Basic sciences	33	23.57 %
Humanities (including language)	5	3.57 %
Specialized courses	97	69.29%
Computer and IT	5	3.57%
Total	140	100 %

d- Program Courses:

• Symbols in the list and their meanings

Connotation	Symbol
University require-	Ur
ment	UI
Faculty requirement	Fr
Botany	В
Chemistry	Ch
Entomology	Е
Geology	G
Mathematics	М
Physics	Ph
Zoology	Z

University requirements

The student studies (8 credit hours) at First level

Code No.	Course Title	No. of	No. of hours/Week			Level
		Units	Lect	Ex-	Prac	
			•	er.	•	
015 Ur	English (1)	2	2	-	-	first
030 Ur	Computer Science (1)	3	2	-	2	first
040 Ur	Computer Science (2)	2	1	-	2	first
050 Ur	Human Rights	1	1	-	-	first

B-Faculty requirements

B1-Compulsory courses

The student studies (18 credit hours) at First level

100 M	General Mathematics (1)	3	2	2	-	first
105 M	General Mathematics (1)	3	2	2	-	first
100 Ph	General Physics (1)	2	2	-	-	first
180 Ph	Practical Physics (1)	1	-	-	3	first
105 Ph	General Physics (2)	2	2	1	-	first
181 Ph	Practical Physics (2)	1	-	-	3	first
100 Ch	General Chemistry (1)	2	2	1	-	first
180 Ch	Practical Chemistry (1)	1	-	-	3	first
105 Ch	General Chemistry (2)	2	2	1	-	first
181 Ch	Practical Chemistry (2)	1	-	-	3	first

B2-Elective courses:

The student studies (6 credit hours) at First level,

183 Ch	Inorganic applied Chemis- try(1)	1	-	2	-	first
183 Ph	Applied Physics (1)	1	-	2	-	first
185 Ch	organic applied Chemistry (2)	1	-	2	-	first
185 Ph	Applied Physics (2)	1	-	2	-	First
100 Z	General Zoology (1)	2	1	-	2	first
105 Z	General Zoology (2)	2	1	-	2	first
100 B	General Botany (1)	2	1	-	2	first
105 B	General Botany (2)	2	1	-	2	first
100 G	General Geology (1)	2	1	-	2	first

105 G	General Geology (2)	2	1	-	2	first
111 IN	General Insects (1)	2	1	-	2	first
112 IN	General Insects (1)	2	1	-	2	first
11 Ur	Healthy Nutrition	2	2	-	-	first
12 Ur	History of Sciences	2	2		-	first
13 Ur	Healthy nutrition	2	2	-	-	first
14 Ur	Scientific thinking	2	2	-	-	first
17	Labor Law	2	2	-	-	first
19 Ur	Selected subjects from Egypt history	2	2	-	-	first

Second level courses

Compulsory courses in First Semester							
223 Ph	Thermodynamics.	3	2	2	-	Second	
261 Ph	Electricity, magnetism and AC current	3	3	1	-	Second	
271 Ph	Physical Optics and optical fibers	3	3	-	-	Second	
275 Ph	Thermodynamics and optics lab.	2	-	-	4	Second	
211 M	Advanced calculus	3	2	2	-	Second	
	Elective one course	in First	t Seme	ester			
251 M	object programming	3	2	2	-		
361 M	Logic circuts	3	2	2	-		
	17 Total credit hours						
Compulsory courses in Second Semester							
212 Ph	waves and oscillations	3	2	2	-	Second	

215 Ph	Modern physics	3	2	2	-	Second
256 Ph	Metals, alloys and ceramic physics	3	3	-	-	Second
265 Ph	Electricity, magnetism and AC current lab	2	-	-	4	Second
212 M	Differential equation (1)	3	2	2	-	Second
	Elective one course	in secon	d Sem	ester		
224 M	Linear Algebra and solid geometry	3	2	2	-	
318 M	Partial differential equation and special functions	3	3	-	-	
		17	Total credit hours			

Third Level Courses

Compulsory courses in First Semester							
311 Ph	Quantum mechanics (1)	3	2	2	-	Third	
313 Ph	Statistacal physics	3	3	1	-	Third	
315 Ph	Modern Physics lap (1)	2	-	-	4	Third	
353 Ph	Solid state (1)	3	3	-	-	Third	
355 Ph	Solid state lap. (1)	1	-	-	3	Third	
361 Ph	Electronics (1)	3	3	-	-	Third	
323 M	Elective one cours	e in first	semest	er -	_		
361 M	Logic circuit	3	2	_	2		
		18		Fotal c	redit ho	ours	
	Compulsory courses in Second Semester						
312 Ph	Theory of electromagnetism and electrodynamics	3	3	1	-	Third	
316 Ph	Methods of mathematical physics	2	2	1	-	Third	

		18	, r	Fotal c	redit ho	ours
322 Ch	Inorganic Chemistry	3	3	-	3	
	and special functions					
318 M	Partial differential equation	3	3	-	-	
Elective one course in Second Semester						
365 APh	Electronic Lab (1)	1	-	-	3	Third
354 Ph	Crystal growth and physical properties of crystals	2	2	-	-	Third
345 Ph	Nuclear Physics Lap (1)	1	-	-	3	Third
342 Ph	Nuclear Physics (1)	3	3	-	-	Third
332 Ph	Plasma physics and applications	3	3	-	-	Third

Fourth level courses

Compulsory courses in First Semester						
411 Ph	quantum mechanics (2)	3	3	-	-	Fourth
441 Ph	Radiation physics, Radioac- tive contamination and radia- tion protection	3	3	-	-	Fourth
451 Ph	Physics of semiconductors and thin films and applica- tions	3	3	-	-	Fourth
453 Ph	Magnetic resonance and spec- tral Mossbauer	3	3	-	-	Fourth
455 Ph	Semiconductor Lab	1	-	-	3	Fourth
491 Ph	Selected subject in physics (1)	3	3	-	-	Fourth
Elective one course in First semester						
457 Ph	Amorphous and glasses mate- rials	3	3	-	-	Fourth
383 Ph	Fluid mechanics	3	3	1	-	Third
19 Total credit hours						
Compulsory courses in Second Semester						
400 Ph	Research and Essay	2	2	-	-	Fourth
414 Ph	Modeling of physical systems	3	3	_	-	Fourth

422 Ph	Low temperature and super- conductors	3	3	-	-	Fourth
432 Ph	Atomic and molecular spec- trum	3	3	1	-	Fourth
458 Ph	Nano materials physics and application	3	3	-	-	Fourth
472 Ph	Physics of laser and applica- tion	3	3	-	-	Fourth
Elective one course in Second Semester						
462 Ph	Mathematical physics using computer	3	3	1	-	
492 Ph	Selected subject in physics (2)	3	3	_	_	
		19	7	Fotal c	redit ho	ours

Contents of the Courses

See course specification forms

6-

7- Program admission requirements

- Faculty of Benha Science accepts students who have a high school (the scientific branches) or equivalent according to the admission requirements specified by the Supreme Council of Universities.
- Faculty of Benha Science accepts transfer students from other science faculties; provided that the number of credit hours that were studied not more than 50% of the total number of credit hours necessary for his graduation. The student is exempt from the courses studied by successfully whatever their level.

8- Regulations for progression and program completion:

According to the bylaw of the faculty of Benha Science, the regulations for progression and program completion in any discipline single or double re- quirement is 140 credit hours at least distributed

as follows: -

(1) University requirements for a bachelor's degree in any single discipline or double 8 credit hours is mandatory.

(2) The total requirements for a bachelor's degree in any single discipline or a double is 24 credit hours, including 18 compulsory hours +6 optional hours.

(3) Specialty requirements for a bachelor's degree in any single discipline or a double is determined by Section 108 certified or relevant departments to specialize hour.

(4) leads college students summer training for six weeks in the relevant areas of specialization Applied before graduation to not be training only after the student completed 90 credits at least an hour and do not count him credit hours.

(5) Scientific field trips serve the area of specialization.

Joining the Program:

A - Vice Dean for Education and Student Affairs supervises on the implementation of the registration rules and procedures and prepare menus for each of the study groups, schedule, distribute students gentlemen academic advisers, processing cards courses for students which is about cards individual for each course as well as cards total for each student, that academic record data in accredited private records, and the completion of enrollment of students in the first week of the start of the semester.

B - Students may register early, after announcing the results of the end of the spring.

C - Take into account when you log decision student success in Prerequisite if any.

D - A student who was not able to register for compelling reasons approved by the

Student Affairs Committee and approved by the College Board to register record late in the additional period for registration (the second week).

E - Student selects one branch to research and essay from two specialized branches.

Study load:

Students are allowed to register in at least 14 credit hours and no more than 19 credit hours per semester. With the exception of the following cases:

A - A student can superior (who has a cumulative average of 3 or more) that adds to its two hours, certified in one semester and a maximum of 8 credit hours throughout the study period in decisions, additional optional requirements, specialization departments, college different, that is added appreciation where to CGPA It is not permitted to be an elective requirement for another decision.

B-The College Board may increase the maximum for the academic workload in the last semester of the student up to a maximum of four credit hours to complete graduation requirements.

C - Not allows the student who has a cumulative rate (1) to register in more than 12 credit hours in a semester.

Additions, deletions, withdraw and modify the path:

A - Any student after the approval of the academic advisor to add or delete scheduled or two until the end of the second week only study and without prejudice to the burden stipulated.

B - Student may withdraw from the study any decision until the end of the seventh week of the start of registration for the semester with the approval of the academic advisor. The record of this decision in the student's academic record estimate 11"withdrawn" on the condition that the student does

not have absenteeism overruns before the withdrawal. And cases before the forced withdrawal over this period the Commission Education and Student Affairs for consideration and approval of the Faculty Council on the withdrawal shall be without prejudice boarding school student.

C - A student may alter the course of the specialization subject to the completion of the requirements of specialization desirable and not counting credit hours, which the student obtained by not located in the area of the requirements of the new specialization and after the approval of the academic advisor and the Committee on Education and Student Affairs and the College Board on this amendment.

Stop registration or drop out

A - Stop registration: the student can apply to stop his registration for one semester and a maximum of four separate classes are connected and for compelling reasons approved by the College Board.
 B - Dropout: the student can re-record if he dropouts for maximum two semesters and for compelling reasons approved by the College Board.

Attendance:

A - The instructor shall register the presence of students at the start of each lecture theory or process in a practical period Prepared for by the Student Affairs and delivers this record at the end of the semester to manage the affairs of Students.

B - When the student exceeds the absence of 10% of the scheduled hour's instructor shall notify the Department of Affairs Students to guide the first warning to the student.

C - When the student exceeds the proportion of the absence of 20% of the scheduled hour's instructor shall notify the Department Student Affairs to direct second and final warning to the student.

D - If increased absenteeism 25% of the total scheduled hours and the absence of a student without an acceptable excuse Student Affairs Committee and approved by the College Board, student records estimate" deprived" decision and intervention as a result of failure to calculate the cumulative average of the student.

E - If increased absenteeism was 25% and the absence of the student excuse acceptable to the Commission, Education and Student Affairs and approved by the College Board, student records withdraw from the course.

F - In the case of a request student add a new decision attendance is calculated from the date of registration.

9- Methods and rules of evaluation of students in rolled in the program:

Rating:

The exam is evaluated each courses at 100 degrees and distributed degrees scheduled as follows:

9.1 courses which did not include the part "practical"

	Method of Assessment	Weighting	learning outcomes assessed
--	----------------------	-----------	----------------------------

Midterm exam & Semester work	10%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final Oral Exam	10 %	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final Term Examination	80%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.

9.2 courses practical separate

Method of Assessment	Weighting	learning outcomes assessed
Mid term exam & Semester work	20%	Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final Oral Exam 20 %		Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final practical Examination 60%		Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.

9.3 courses which include part "practical"

Method of Assessment	Weighting	learning outcomes assessed
Mid term exam & Semester work 16%		Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
Final Oral Exam12 %Final practical Examination24%Final Term Examination48%		Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
		Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.
		Measure knowledge and understanding (a1 to a8), intellectual (b1 to b6), professional (c1 to c6) and general (d1 to d6) skills.

9.4 Course search and essay

A - 60% of the total score for the course of the various activities carried out by the student during his study of the course.

B- 40% of the total scores for the course of the discussion session

e. Estimated grades and points obtained by the student in each course as follows:

Grade	Symbol	Number of points	Mark
Excellent	Α	4	90-100%
Excellent	Α-	3.7	85-<90%
Voru good	B+	3.3	80-<85%
Very good	В	3	75-<80%
Good	В-	2.7	70-<75%
Guu	C+	2.3	65-<70%
Pass	C	2	60-<65%
Failed	F	0	<60%
Absent	F-	0	-

10- Learning resources:

a- Adequacy of laboratories:

The department has 6 student labs which are relatively enough in proportion to the number of students.

- Infra Structure:

- The faculty begin preparing the infra structure of the department through renewing the four student labs exist in the 4st floor of the Physics department. The plan of refurbishing based on repairing the damaged benches Floors and windows, painting walls providing labs with electric fans and enough lights. In addition to replacing the old wallboard into modern one and provide labs with new instruments.

b- Adequacy of Computer facilities

Some of the stuff member's rooms need new PCs.

e- Adequacy of field/practical training resources:

The department arranges 1 Week scientific trip for 3th Year students.

There is summer training by the department itself, and the department provides some stu-

dents

of the third year the chance for summer training at related companies. Some staff members provide students the chance to get their summer training at their labs.

b- Matching of the faculty members specialization to program needs:

Specification Area Status

Gogood enough.

c- availability and adequacy of program handbook:

Available: √	Not Available			
d- Adequacy of library facilities:				
Adequate: 🗸	Not adequate			
e- Adequacy of laboratories:				
Adequate: √	Not adequate			
f- Adequacy of computer facilities:				
Adequate: √	Not adequate			
g- Adequacy of field/practical training resources:				
Adequate: √	Not adequate			

<u>11- Quality Management</u>:

a- effectiveness of the system:	Effective: $$	Not effective:				
b- Effectiveness of Faculty and University laws and regulations for progression and						
completion:	Effective: $$	Not effective:				
c- Effectiveness of program external evaluation system:						
i- External evaluators:	Effective: $$	Not effective:				
ii- Students:	Effective: $$	Not effective:				
iii- Other stallholders:	Effective:	Not effective:				

d- Faculty response to student and external evaluations:

Most comments and suggestions of the students and external evaluations were discussed several times during faculty meetings and reviewed by the course instructors and are ap-15

plied into the action plan for the next academic year.

12- Proposal for program development

a- Program structure (units/credit hours): credit hours

b- Courses, deletion, additions and modifications: provided in the action plan for the next year

c- Staff development requirements: More facilities for different laboratories and resources

for the library are required.

I- Phyaics department Plans

Task	Soctors	Drogroup of action
I ask	<u>Sectors</u>	Progress of action
Curriculum has to be in the credit hours system to give the student the opportunity to choose what they like in the proper time.	Head of Physics department and all courses instructors	credit hours system has started by the academic year 2010/2011
Refurbishing of three labs in the 4_{st} floor (fore students and one in the 5^{th} floor)	Head of Physics department	The four labs were renewed through painting, repairing the damaged floors, benches and windows and are ready to be used.
Purchase some new experi- mental tools, materials as well as, new scientific systems	Head of Physics department	Several suction and aeration systems were purchased
Purchase some new instru- ments:	Head of Physics Department_and Dr. Islam Sheha	Electrochemical test station and buttery analyzer

13- Progress of the previous year's action plan:

Purchase data show and white screen board for the depart- ment		data show and white screen board were purchased
In most cases the lecturer are not using modern means and tools of interactive teaching	Department head and All courses instructors	Many of the courses instructors prepared their courses by power point data presentation
equipping Seminar halls with white boards, projectors or data show and computers.	Department head and All courses instructors	Offering data show computers in the class rooms. Seminar hall not yet arranged
Enhancement of the student field training program	Head of Physics Department and all department stuff members	Some staff members provide students the chance to get their summer training at their labs.

13- Next year action plan (2015-2016):

<u>No.</u>	<u>Task</u>	Period	Sectors	Leading responsibility	Cost estimates	Risk Parameters
<u>1</u>	Development of courses: 1- Contents 2- Notes 3- Laboratory equipment's	one year	-All depart- ment Stuff mem- bers.	-Head of Physics Department	-	-
2	Physics work day	<u>One</u> term	-Head of Phys- ics Department -Prof. <u>Mo-</u> <u>hamed Ali</u>	Head of Phys- ics Department -Dean and vise Dean		No fund or insufficient fund
<u>3</u>	Refurbishing of solid state and Laser research lab	one year	-Head of Phys- ics Department -Prof <mark>.</mark> <u>Mahmoud</u> <u>Makled and</u> <u>Nabile henday</u>	-Head of Physics Department -Dean and vise Dean	100.000 LE	

Program Coordinators: Prof. Mahmoud H. Makled

Head of the Physics Department: Prof. Mervat Gamal Sharawy

Evaluator	Tool	Sample
1- Senior Students	Questionnaire	Not less than 25%
2- Alumni	Questionnaire	Not less than 25%
3- Stakeholders	Questionnaire, workshops, seminars,	Representative for all sectors
	conferences	
4- External Evaluators	Reports	Report 1-2
5- Internal Evaluators	Reports	Report 1-2

11- Methods of program evaluation:

National Academic Reference Standards (NARS)

Basic Sciences

I. National Academic Reference Standards

1. National Academic Reference Standards

1.1. General Attributes of the Graduates of Basic Sciences The graduates must be able to:

- 1.1.1. Recognize the role of Basic Sciences in the development of society.
- 1.1.2. Develop scientific approaches that meet community needs considering economic, environmental, social, ethical, and safety requirements.
- 1.1.3. Utilize scientific facts and theories to analyze and interpret practical data.
- 1.1.4. Collect, analyze, and present data using appropriate formats and techniques.
- 1.1.5. Postulate concepts and choose appropriate solutions to solve problems on scientific basis.
- 1.1.6. Apply effectively information technology relevant to the field.
- 1.1.7. Participate effectively in a multidisciplinary teamwork and be flexible for adaptation, decision making and working under contradictory conditions as well as exhibiting the sense of beauty and neatness.
- 1.1.8. Adopt self and long life-learning and participate effectively in research activities.
- 1.1.9. Deal with scientific data in Arabic, English or other languages.

1.2. Knowledge and Understanding

Graduates must acquire knowledge and understanding of:

- 1.2.1. The related basic scientific facts, concepts, principles and techniques.
- 1.2.2. The relevant theories and their applications.
- 1.2.3. The processes and mechanisms supporting the structure and function of the specific topics.
- 1.3. The related terminology, nomenclature and classification systems.
- 1.2.4. The theories and methods ap-19 plied for interpreting and ana-

lyzing data related to discipline.

- 1.2.5. The developmental progress of the program-related knowledge.
- 1.2.6. The relation between the studied topics and the environment.

1.3. Practical and Professional Skills

The graduates must be able to:

- 1.3.2. Apply techniques and tools considering scientific ethics.
- 1.3.3. Solve problems using a range of formats and approaches.
- 1.3.4. Identify and criticize the different methods used in addressing subject related issues.

1.4. Intellectual Skills

The graduates must be able to:

- 1.4.1. Differentiate between subject-related theories and assess their concepts and principles.
- 1.4.2. Analyze, synthesize, assess and interpret qualitatively and quantitatively science relevant data.
- 1.4.3. Develop lines of argument and appropriate judgments in accordance with scientific theories and concepts.
- 1.4.4. Postulate and deduce mechanisms and procedures to handle scientific problems.
- 1.4.5. Construct several related and integrated information to confirm, make evidence and test hypotheses.

1.5. General and Transferable Skills

The graduates must be able to:

- 1.5.1. Use information and communication technology effectively.
- 1.5.2. Identify roles and responsibilities, and their performing manner.
- 1.5.3. Think independently, set tasks and solve problems on scientific basis.
- 1.5.4. Work in groups effectively; manage time, collaborate and communicate with others positively.

^{1.3.1.} Plan, design, process and report on the investigated data, using appropriate techniques and considering scientific guidance.

- 1.5.5. Consider community linked problems, ethics and traditions.
- 1.5.6. Acquire self- and long life-learning.
- 1.5.7. Apply scientific models, systems, and tools effectively.
- 1.5.8. Deal with scientific patents considering property right.
- 1.6.9. Exhibit the sense of beauty and neatness

2. National Academic Reference Standards for Physics

Physics is the study of energy and behavior of single atom and its components. Physics is the foundation upon which the other physical sciences are based such as; astronomy, chemistry and geology. The beauty of physics lies in the simplicity of the fundamental physical theories and assumptions that can alter and expand our view of the world around us. Like all sciences, physics is based on experimental observations and quantitative measurements. The main objective of physics is to use a limited number of fundamental laws that govern natural phenomena to develop theories that can predict the results of future experiment.

Physicists are expected to become investigators in industrial or research institutions. They can also have careers as air navigators and instrument manufacturers, scientific reporters, technical consultants and university staff members. They can also be employed in information technology companies, educational institutions and health care organizations.

2.1. The Attributes of a Physicist

In addition to the general attributes of basic sciences graduates, the physics graduates must be able to:

- 2.1.1. Demonstrate a good basic knowledge of structural and functional aspects of physical systems at many spatial scales, from single molecule to the whole system.
- 2.1.2. Connect fundamental ide- as about the physical be-

havior of matter and energy to system's structure and function.

2.2. Knowledge and Understanding

In addition to the general knowledge acquired by Basic Sciences graduates, the physics graduates must know and understand the:

- 2.2.1. Characteristics and physical properties of matter.
- 2.2.2. Static and dynamic properties of fluids.
- 2.2.3. The Basics of Electricity.
- 2.2.4. Concepts of electromagnetism.
- 2.2.5. Principles of heat transfer and thermodynamics.
- 2.2.6. Theoretical and practical aspects of optics, nuclear physics and other related branches.
- 2.2.7. Application of advanced physical techniques.
- 2.2.8. Basics and mechanisms of energy transfer.

2.3. Practical and Professional skills

In addition to the general skills acquired by Basic Sciences graduates, the physicist must be able to:

- 2.3.1. Apply mathematical tools and techniques to analyze and interpret experimental results.
- 2.3.2. Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.
- 2.3.3. Use the national standards for laboratory equipment which are essential for practical research work.
- 2.3.4. Present theoretical and experimental results in understandable forms such as tables and graphs.

2.4. Intellectual skills

In addition to the general skills acquired by Basic Sciences graduates, the physicist must be able to:

- 2.4.1. Utilize theories of physics to interpret physical phenomena.
- 2.4.2. Apply appropriate physical principles to create and analyze system components.
- 2.4.3. Choose optimum solutions for physical problems based on analytical thinking.

Program Matrixes

Faculty mission vs. Special Physics program design matrix

I. Program attributes vs. faculty mission

		Faculty mission The Faculty of Science, Benha University, confesses and admits to:				
The gra	ogram Aims: e overall aims of the pro- im are to provide the iduate with:	promote a distinct graduate who will be able to conduct research and inno-	conduct high- value scien- tific research that deserves regional and international awareness	recruit human resources and applied research to provide train- ing services and scientific consul- tation for envi-		
a The role of Physics and Basic Sciences in the development of society		\checkmark		\checkmark		
b	Physical facts and theories to analyze and interpret practical data		\checkmark			

С	Connect Fundamental ideas about the physical behavior of matter and energy to system's structure and function.	\checkmark	\checkmark	
d	Scientfic information and applications in the most of physical branches	\checkmark	\checkmark	\checkmark
e	Classification and identification the materials or physical phenomena according physics guidelines and Collection, analyses, and presentation of data using appropriate formats and .techniques	\checkmark	\checkmark	
f	Graduates are expected to become investigators in in- dustrial or research institu- tions, scientific reporters, technical consultants, uni- versity staff members	\checkmark	\checkmark	\checkmark
g	How to develop communication, writing and scientific presenta- tion skills		\checkmark	

II.Program Intended Learning Outcomes(ILOs) vs. the faculty mission

a) Knowledge and Understanding

Program Aims:	Faculty mission
The overall aims of the pro-	The Faculty of Science, Benha University,
gram are to provide the	confesses and admits to:

	iduate with:	promote a distinct graduate who will be able to conduct research and in- novation that will help him in the labor market competition, tak- ing into account the ethics of the profession,	conduct high- value scientific research that deserves re- gional and in- ternational awareness and publication	recruit human resources and applied research to provide train- ing services and scientific consul- tation for envi- ronmental issues and society de- velopment
a.1	Investigate the physical facts of (matter, fluids, op- tics, energy, nuclear and oth- er physical branches), physi- cal concepts of (thermody- namics, electromagnetism and most of physical phe- nomena), physical princi- ples and techniques.			
a.2	Select and use some of spe- cial functions, equations and computer programs to solve the related physical problems according to classical and quantum physics			\checkmark
a.3	Describe the relation be- tween structure, composition and Physical properties	\checkmark	\checkmark	\checkmark
a.4	Identify the theoretical and practical aspects of atomic, biophysics, solid state and other related branches in ad- dition to physical phenome- na, systems and applications.	\checkmark	\checkmark	
a.5	Memorize the processes and mechanisms supporting the structure, and Physical properties of matter and physical systems.	\checkmark		

a.6	Define microscopic and mac- roscopic studies for different physical area and physical problems			\checkmark
a.7	Understand the advanced theories, models, methods and techniques to interpret and analyze data, related to the physical discipline.		\checkmark	
a.8	Understand the essential facts, major concepts, princi- ples, and theories in most basic sciences branches and other sciences to understand the recent advances in Phys- ics	\checkmark	\checkmark	\checkmark

b) Intellectual Skills

	Faculty mission The Faculty of Science, Benha University, confesses and admits to:				
Program Aims: The overall aims of the pro- gram are to provide the graduate with:	promote a distinct graduate who will be able to conduct research and inno- vation that will help him in the la- bor market compe- tition, taking into account the ethics of the profession,	value scien- tific research that deserves regional and international awareness and publica-	applied research to provide train-		

	T		ſ	[]
b.1	Differentiate between the			
	different states of the mat-			
1	ter, elements and com-	2		
1	pounds based on the	N		
1	recognition and quantifica-			
1	tion of the properties.			
b.2	Organize special func-			
1	tion, equation, models			
1	and programs to exam	,	1	
1	the validity of the physical	\checkmark	\checkmark	
1	laws and analyze system			
1	components.			
b.3	Interpret and analyze the			
0.5	practical data and physical			
1			\checkmark	
1	properties qualitatively			
	and quantatively.			
b.4	Solve the physical			
	problems by the			
	appropriate judgments in accordance with	2	2	
	physical theories and	N	N	
	concepts to choose			
	.optimum solutions			
b5.	Confirm the suitable tech-	<u> </u>		
	nique to study crystal			
	structure, fluid mechanics,			
	plasma sys-			
	tems, digital networks. and			
	any physical topic, system			
	and phenomena			
b6.	Modify most of the			
	physical properties of			
	different materials by the		\checkmark	
	modification of			
	structure, composition and			
	.synthesis method			

c) Professional and Practical Skills

		Faculty mission The Faculty of Science, Benha University, confesses and admits to:					
Program Aims: The overall aims of the pro- gram are to provide the graduate with: C1. Sketch and prepare the physi- cal systems, techniques and data considering physical guid- ance		promote a dis- tinct graduate who will be able to conduct re- search and in- novation that will help him in the labor market competition, taking into ac- count the ethics of the profes- sion,	conduct high- value scientific research that deserves region- al and interna- tional awareness and publication	recruit human resources and applied research to provide train- ing services and scientific consul- tation for envi- ronmental issues and society de- velopment			
c1.	cal systems, techniques and data considering physical guid-	\checkmark	\checkmark				
c2.	Analyze the computational pro- grams to interpret the physical and mathematical problems	\checkmark	\checkmark	\checkmark			
с3.	Summarize the practical data according to national standard	\checkmark	\checkmark				
c4.	Collect comprehensive physical knowledge and intellectual skills to solve the physical problems by acceptable methods in re- search tasks.	\checkmark	\checkmark	\checkmark			
c5.	Judge to apply physics principles and mathematical tools to modern areas of physics research.	\checkmark	\checkmark				
C6.	Able to conduct experiments, techniques and report the theo- retical and experimental results in the understandable forms such as tables and graphs.						

d) General Skills

		Faculty mission								
		The Faculty	The Faculty of Science, Benha University,							
		confesses and admits to:								
Program Aims: The overall aims of the pro- gram are to provide the graduate with:		promote a dis- tinct graduate who will be able to conduct re- search and in- novation that will help him in the labor market competition, taking into ac- count the ethics of the profes- sion,	value scientific research that deserves re- gional and in-							
d1.	Use computers and internet for communication, data handling and word pro- cessing.		V							
d2.	Communicate to work effi- ciently in a team or separate- ly			\checkmark						
d3.	Solve physical problems on scientific basis.	\checkmark								
d4.	Effectively manage tasks, time, and resources.	\checkmark	\checkmark							
d5.	Search for information and engage in life-long self- learning discipline.	\checkmark	\checkmark							
d6.	Able to perform, read and interpret scientific literature	\checkmark	\checkmark							

Program aims of Special Physics and attributes of graduate

in Special Physics NARS matrix

Att	Attributes of graduate in Special Physics NARS			Program aims of Special Physics						
		а	b	С	d	e	f	g		
1	Demonstrate a good basic knowledge of structural and functional aspects of physical systems at many spacial scales, from single molecule to the whole system	x			x	x				
2	Connect fundamental ideas about the physical behavior of matter and energy to system's structure and function			х		х				
3	Utilize scientific facts and theories to analyze and interpret practical data				Х					
4	Apply effectively information technology relevant to the field							х		
5	Develop scientific approaches that meet community needs considering economic, environmental, social, ethical, and safety requirements						х	х		
6	Collect, analyze, and present data using appropriate formats and techniques		x							
7	Adopt self and long life-learning and participate effectively in research activities						х			

NARS ILOs matrix&Special Physics B.Sc. Program ILOs

Sp	ecial Physics B.Sc. NARS ILOs	Special Physics B.Sc. Program ILOs							
Knowledge and Understanding		Knowledge and Understanding							
	······································		a.2	a.3	a.4	a.5	a.6	a.7	a.8
1	Characteristics and physical properties of matter.	х		Х		Х			
2	Static and dynamic properties of fluids.	х					х		
3	The Basics of Electricity.	х					х		
4	Concepts of electromagnetism.	х							
5	Principles of heat transfer and thermodynamics.	х							
6	Theoretical and practical aspects of optics, nuclear physics and other related branches.				х		х	x	х
7	Appli Application of advanced physical techniques.		Х			Х		Х	х
8	Basics and mechanisms of energy transfer 2.2.8.	Х			Х		Х		

Special Physics B.Sc. NARS ILOs		Special Physics B.Sc. Program ILOs							
Intellectual Skills		Intell	Intellectual Skills						
			b.2	b.3	b.4	b.5	a.6		
1	Utilize theories of physics to interpret physical phenomena.	x				x			
2	Apply appropriate physical principles to create and analyze system components.		x				x		
3	Choose optimum solutions for physical problems based on analytical thinking.			x	x				

Special Physics B.Sc. NARS ILOs			Special Physics B.Sc. Program ILOs						
		Professional and Practical		tical Sk	Skills				
Professional and Practical Skills		c .1	c.2	c.3	c.4	c.5	c.6		
1	Apply mathematical tools and techniques to analyze and interpret experimental results.	х	х						
2	Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.				x	x			
3	Use the national standards for laboratory equipment which are essential for practical research work.			x					
4	Present theoretical and experimental results in understandable forms such as tables and graphs.						х		
Spe	cial Physics B.Sc. NARS ILOs	Specia	al Phys	ics B S	c. Prog	ıram II	Os		
ope		-	<u> </u>				0.5		
General Skills		Gene	General Skills						
		d.1	d.2	d.3	d.4	d.5	d.6		
1	Use information and communication technology effectively.	х							

2	Identify roles and responsibilities, and their performing manner.					х
3	Think independently, set tasks and solve problems on scientific basis.		х			
4	Work in groups effectively; manage time, collaborate and communicate with others positively.	x		x		
5	Consider community linked problems, ethics and traditions.					
6	Acquire self- and long life–learning				х	

Program Coordinator: Name: Prof. Dr. Mahmoud Hosseny Makled	Signature:	Date:
Head of the Department: Name: Prof. Dr. Merfit Gamal Elsharawy	Signature:	Date: