

Benha university

Faculty of science

Geology Dept.

Examination of Geochemistry (433 G)for the 4th level students (special Geology), Jan 2019.

4th Level Date: 13 / 1 /2019 Time: Two Hours

Answer the following questions.

1) <u>Choose the best answer for the followings:</u>

- 1. In peraluminous rocks, we expect to find an Al₂O₃ rich mineral present as a modal mineral such as -------or an Al₂SiO₅ mineral like ----.
 - a. diopside corundum
 - b. corundum-diopside
 - c. topaz sillimanite
 - d. corundum topaz
- 2. Basalts with normative compositions that contain no Qtz or Opx, but contain Ne are silica undersaturated (the volume Ne– Plag– Cpx– Ol) they may be – – .
 - a. Basanites
 - a. Hornblendite
 - b. Quartz Tholeiites.
 - c. Olivine Tholeiites.
- 3. In basic magmas the alkaline elements such as K and Na behave as ----- elements, so crystallization of Mg & Fe- rich phases tends to cause both SiO2 and alkalis to ----.
 - a. Comaptible incerease
 - b. Comaptible decrease
 - c. incompatible decrease
 - d. incompatible increase
- **4.** Potassium never forms its own phase in ------; its concentration rarely exceeding 1500 ppm; but K is certainly not ---- element in granites
 - a. MORB trace
 - b. MORB incompatible
 - c. OIB trace
 - d. OIB- incompatible
- 5. Compatibility of an ion is controlled by two things: its valence and its ionic radius Both must approximate those of the ---- element for the ---- element to be compatible in the mineral.
 - a. compatible –incomatiple
 - b. incompatible –comatiple
 - c. major-trace
 - d. trace major
- **6.** If two ions have a similar radius but different valence, the ion with the higher charge is more readily incorporated into the solid over the liquid. Thus Cr+3 and Ti+4 are almost always preferred in solids as compared to liquids.
 - a. Mg2+-Ni2+
 - b. Fe2+- Ni2+
 - c. K Rb
 - d. Cr+3 Ti+4

(24 Marks)

- 7. Hf usually does not form its own mineral; it is ----- in zircon.
 - a. precipitated
 - b. camouflaged
 - c. admitted
 - d. captured
- 8. $K + + Si4 + \leftrightarrow Sr2 + + Al3 +$ is good example for ----- to balance charge.
 - a. free substitution
 - b. coupled substitution
 - c. compatible substitution
 - d. incompatible substitution
- 9. ----- involves entry of a foreign ion with an ionic potential less than that of the major ion.
 - a. Free substitution
 - b. Camouflage
 - c. Admission
 - d. Capture
- **10.** Melt of amphibole– bearing rock will \rightarrow increase K/Rb in the partial melt.
 - a. **K/Rb**
 - b. K/Ba
 - c. Ba/Sr
 - d. Pyroxene/Hornblende

11. The ratio <u>Ba/Sr</u> increases with crystallization of plagioclase

- a. K/Rb
- b. K/Ba
- c. Ba/Sr
- d. Cr/Sc

12. ----- Substitutes for Ca in plagioclase (but not in pyroxene), and, to a lesser extent, for K in K– feldspars.

- a. **Sr**
- b. Ba
- c. Ti
- d. Sc
- 13. ---- Commonly incompatible (like HREE). Strongly partitioned into garnet and amphibole. Sphene
 - a. U
 - b. Th
 - c. **Y**
 - d. Ni

14. The HREE readily substitute for ----- in garnet, and hence can be concentrated by it.

- a. Fe2+
- b. Al3+
- c. Cr3+
- d. Ti4+

15. MORB exhibits a LREE depleted pattern; upper continental crust is LREE enriched with a negative **Eu anomaly**

- a. enriched- deplete
- b. **depleted enriched**
- c. enriched enriched
- d. depleted depleted

16. Removal of early formed olivine would decrease the Mg/Fe^{2+} concentration

- a. increase
- b. decrease
- c. stabilize
- d. not affect

17. The N–MORB shows <u>a large LREE depletion</u>, and a positive slope.

- a. E–MORB
- b. **N–MORB**
- c. OIB
- d. OIA
- **18.** In MORB (mid-ocean ridge basalts) and OIB (oceanic island basalts) CO₂ and H₂O concentrations may be roughly similar and are quite------ low (<0.5%)
 - a. low <5%
 - b. low <0.5%
 - c. high >5%
 - d. high <0.5%

19. Magma viscosity increases with increasing SiO2 concentration in the magma. This is because---.

- a. viscosity is the resistance to flow.
- b. viscosity depends on the composition of the magma, and temperature.
- c. lower SiO₂ content magmas have higher viscosity than higher SiO₂ content.
- d. lower temperature magmas have higher viscosity than higher temperature.

20. Certain minerals are practically confined to deep-seated intrusive rocks, e.g., -----and -----.

- a. muscovite and Microcline
- b. microcline and orthoclase
- c. albite and muscovite
- d. leucite and olivine
- 21. Trace elements will prefer
 - a. liquid phase.
 - b. solid phase.
 - c. either solid or liquid phase.
 - d. to have own structure phase.

22. Which of the following statements is <u>not true</u> about the trace element?

- a. can be substituted for network-forming cations in mineral structures
- b. appear in the mineral's chemical formula
- c. the same elements could be compatible or incompatible.
- d. could be plotted on both Spider and Harker diagrams.

23. Which pairs of the following is not true during the ascending of magma?

- a. Temperature Drops Increase in viscosity
- b. Crystallization begins -Decrease in viscosity
- c. More polymerized- Increase in viscosity
- d. H2O concentration drops Increase in viscosity

24. A normal geothermal gradient is approximately ______.

- a. 3000 degrees C per km
- b. 300 degrees C per km
- c. 30 degrees C per km
- d. 3 degrees C per km

2) <u>Determine whether each of the statements below is true or false.</u> Correct the false if any? (12 Marks)

- 1. True.
- 2. False diagrams compare elements with large differences of absolute abundance using either log or linear scale
- **3.** False On spider diagram, elements arranged in order of increasing compatibility (i.e., the more incompatible at the <u>left</u>).
- 4. False, At depth in the Earth, nearly all magmas contain gas. Gas gives magmas their explosive character, because the volume of gas <u>expands</u> as pressure is reduced.
- 5. True.
- 6. False, Mixtures of minerals always have the <u>lower</u> melting points as the pure minerals would.
- **7.** True.
- **8.** True.
- **9.** False, When the parent magmas of basalts crystallize, they preferentially crystallize the more magnesium-rich and iron-poor forms of the silicate minerals olivine and pyroxene.
- **10.** False, Mode is a set of realistic observable minerals that could crystallize from a magma with the same chemical composition as the rock.
- **11.** False, S-type granitoids normally intrude in relatively small volumes, particularly in active margins and continental collision zones.

(4 Marks)

12. True.

Туре	SiO ₂	K ₂ O/Na ₂ O	Ca, Sr	A/(C+N+K)*	Fe ³⁺ /Fe ²⁺	Cr, Ni	⁻¹⁸ O	⁸⁷ Sr/ ⁸⁶ Sr	Misc	Petrogenesis
М	46-70%	low	high	low	low	low	< 9‰	< 0.705	Low Rb, Th, U	Subduction zone or
									Low LIL and HFS	ocean-intraplate
										Mantle-derived
I	53-76%	low	high in	low: metal-	moderate	low	< 9‰	< 0.705	high LIL/HFS	Subduction zone
			mafic	uminous to					med. Rb, Th, U	Infracrustal
			rocks	peraluminous					hornblende	Mafic to intermed.
									magnetite	igneous source
S	65-74%	high	low	high	low	high	> 9‰	> 0.707	variable LIL/HFS	Subduction zone
									high Rb, Th, U	
				peraluminous					biotite, cordierite	Supracrustal
									Als, Grt, Ilmenite	sedimentary source
Α	high	Na ₂ O	low	var	var	low	var	var	low LIL/HFS	Anorogenic
	□□77%	high		peralkaline					high Fe/Mg	Stable craton
									high Ga/Al	Rift zone
									High REE, Zr	
									High F, Cl	

3) a. Discuss the general characteristics of A-, S-, M- and I- type granites?

b. Hypothetical garnet lherzolite = 60% olivine, 25% orthopyroxene, 10% clinopyroxene, and 5% garnet (all by weight), using the data in the next table determine the bulk distribution coefficient for Erbium in garnet lherzolite? (4 Marks)

orum m	i gai net mer	Lonici		(¬ Iviai K5)				
	Olivine	Opx	Срх	Garnet	Plag	Amph	Magnetite	
La	0.007	0.03	0.056	0.001	0.148	0.544	2	
Ce	0.006	0.02	0.092	0.007	0.082	0.843	2	
Nd	0.006	0.03	0.230	0.026	0.055	1.340	2	
Sm	0.007	0.05	0.445	0.102	0.039	1.804	1	
Eu	0.007	0.05	0.474	0.243	0.1/ 1.5 *	1.557	1	
Dy	0.013	0.15	0.582	1.940	0.023	2.024	1	
Er	0.026	0.23	0.583	4.700	0.020	1.740	1.5	
Yb	0.049	0.34	0.542	6.167	0.023	1.642	1.4	
Lu	0.045	0.42	0.506	6.950	0.019	1.563		
		Data fro	om Rollins	on (1993).	* Eu3+/E		_	
							_	

 $\overline{D_{Eu}} = (0.6 * 0.007) + (0.25 * 0.05) + (0.10 * 0.474) + (0.05 * 0.243) = 0.07625$

- c. Based on your study of trace element geochemistry; briefly point to the main differences between MORB and OIB? (4 Marks)
 - The large ion lithophile (LIL) trace elements (K, Rb, Cs, Ba, Pb²⁺ and Sr) are incompatible and are all enriched in OIB magmas with respect to MORBs
 - The ratios of incompatible elements have been employed to distinguish between source reservoirs
 - a. N-MORB: the K/Ba ratio is high (usually > 100)
 - b. E-MORB: the K/Ba ratio is in the mid 30's
 - c. OITs range from 25-40, and OIAs in the upper 20's
 - HFS elements (Th, U, Ce, Zr, Hf, Nb, Ta, and Ti) are also incompatible, and are enriched in OIBs > MORBs.
 - OIAs tend to be depleted in Ni and Cr relative to OITs and MORBs, which, along with the higher Mg#s, suggests they have experienced fractionation of these phases prior to eruption.
 - Ratios of these elements are also used to distinguish mantle sources
 - The Zr/Nb ratio for N-MORB generally quite high (>30) while for OIBs are low (<20)

– Good Luck– Dr. M. M. Mogahed