

Benha university Faculty of science Chemistry department 3rd year students Applied chemistry Thermodynamic of solutions Date : 9-1-2014 Time: 2 hours Code:335

Answer for four questions only

- 1- Show the relation between lowering of vapour pressure and mole fraction of non-volatile solute(x_2).
- 2- Which of the following derivatives are equal to chemical potentials and which are equal to the partial molar quantity?
 - i- $(\partial A/\partial n_i)_{T,V,nj}$
 - ii- $(\partial E/\partial n_i)_{T,P,nj}$
 - iii- $(\partial H/\partial n_i)_{S,P,nj}$
 - iv- $(\partial E/\partial n_i)_{S,V,nj}$
 - v- $(\partial H/\partial n_i)_{T,P,nj}$
 - vi- $(\partial V / \partial n_i)_{T,P,nj}$
 - vii- $(\partial S/\partial n_i)_{T,P,nj}$
 - viii- $(\partial G/\partial n_i)_{T,P,nj}$
- 3- 100 g each of ethanol and methanol are mixed at 20°C to prepare an ideal mixture. The vapour pressure of pure methanol is 88.7 mm and that of ethanol is 44.5 at 20°C Calculate
 - i) the partial vapour pressure of ethanol and methanol in solution

ii) the vapour pressure of solution, and iii) the vapour phase composition.

- 4- Derive the general form of Gibbs-Duhem equation.
- 5- Calculate the enthalpy, entropy and free-energy of mixing of one mole toluene and two mole of benzene at 25°C.

Good luck