Benha university	$3^{\text {rd }}$ year students	Date : 9-1-2014
Faculty of science	Applied chemistry	Time: 2 hours
Chemistry department	Thermodynamic of	Code:335
	solutions	

Answer for four questions only
1- Show the relation between lowering of vapour pressure and mole fraction of non-volatile solute (x_{2}).

2- Which of the following derivatives are equal to chemical potentials and which are equal to the partial molar quantity?
i- $\quad\left(\partial \mathrm{A} / \partial \mathrm{n}_{\mathrm{i}}\right)_{\mathrm{T}, \mathrm{V}, \mathrm{nj}}$
ii- $\quad\left(\partial \mathrm{E} / \partial \mathrm{n}_{\mathrm{i}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{nj}}$
iii- $\quad\left(\partial \mathrm{H} / \partial \mathrm{n}_{\mathrm{i}}\right)_{\mathrm{S}, \mathrm{P}, \mathrm{nj}}$
iv- $\quad\left(\partial \mathrm{E} / \partial \mathrm{n}_{\mathrm{i}}\right)_{\mathrm{S}, \mathrm{V}, \mathrm{nj}}$
$\mathrm{v}-\quad\left(\partial \mathrm{H} / \partial \mathrm{n}_{\mathrm{j}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{nj}}$
vi- $\quad\left(\partial \mathrm{V} / \partial \mathrm{n}_{\mathrm{i}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{nj}}$
vii- $\quad\left(\partial \mathrm{S} / \partial \mathrm{n}_{\mathrm{i}}\right)_{T, \mathrm{P}, \mathrm{nj}}$
viii- $\left(\partial G / \partial n_{i}\right)_{T, P, n j}$
3- 100 g each of ethanol and methanol are mixed at $20^{\circ} \mathrm{C}$ to prepare an ideal mixture. The vapour pressure of pure methanol is 88.7 mm and that of ethanol is 44.5 at $20^{\circ} \mathrm{C}$
Calculate
i) the partial vapour pressure of ethanol and methanol in solution
ii) the vapour pressure of solution, and iii) the vapour phase composition.

4- Derive the general form of Gibbs-Duhem equation.
5- Calculate the enthalpy, entropy and free-energy of mixing of one mole toluene and two mole of benzene at $25^{\circ} \mathrm{C}$.

$$
\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} . \mathrm{mol}
$$

