أ.د. أحمد سعيد شلبي قسم الكيمياء كليه العلوم جامعه بنها امتحان ثالثه كيمياء خاصه ميكانيكا احصائيه Prof.Dr. Ahmad S. Shalabi

Benha University	3 rd year Students	Date : 29-12-2013
Faculty of Science	Special Chemistry	Time : 3 hours
Chemistry Department		
	Staistical Mechanics	

ANSWER THREE QUESTIONS ONLY

- 1. Based on the kinetic theory of gases, derive an expression for the translational energy E_t of one mole of a gas.
- 2. Write an expression for the Maxwell Boltzman law of the distribution of energy.
- 3. How the entropy of a solid is determined when exists in two forms α (high temperature), and β (low temperature)?
- 4. Calculate the vibrational partition function of :

(i) molecular hydrogen
(ii) molecular chlorine
at 300 °K, assuming them to be harmonic oscillators.
[ω of H₂ is 4405 cm⁻¹ - ω of Cl₂ is 565 cm⁻¹ - hcω/KT = 1.439ω/T]

GOOD LUCK

أ.د. أحمد سعيد شلبي قسم الكيمياء كليه العلوم جامعه بنها امتحان ثالثه كيمياء خاصه ميكانيكا احصائيه Prof.Dr. Ahmad S. Shalabi

Benha University Faculty of Science	3 rd year Students Special Chemistry	Date : 29-12-2013 Time : 3 hours
·	Chemistry Department	
	Staistical Mechanics	

MODEL ANSWERS

1-

The Kinetic Theory of Gases

Ideal gas law

$$PV = (1/3) Nmc^2$$

P : the pressure of the gas

V : the volume

N : the number of molecules

m : the mass of the molecules

 c^2 : the mean square of the velocities of the molecules

at the experimental temperature

Since the equation of state of one mol of an ideal gas is

PV = RT(1/3)Nmc² = RT 1/2 Nmc² = 3/2 RT

N : Avogadro's number i.e the number of molecules in one mole. Since the kinetic energy of translation per molecule is

$$1/2 mc^{2}$$

it follows that

$$E_{tr} = 1/2 \text{ Nmc}^2 = 3/2 \text{ RT}$$

Where \mathbf{E}_{tr} is the total translational energy of the one mol of the gas.

2-

The Partition Function

. At each temperature there is a particular distribution of the total energy of a gas among its constituent molecules. Let ε_i represents the energy, in excess of the lowest energy state (zero point vibrational energy) at absolute zero .

Suppose N_0 is the number of molecules in the lowest energy state ε_0 , and N_i is the number of molecules in the energy state ε_i .

The energy distribution among the molecules at constant volume and absolute temperature, is

$$N_i = N_0 e^{-\epsilon / KT}$$

where **K** is the **Boltzman constant**, $\mathbf{K} = \mathbf{R}/\mathbf{N}$, **R** is the gas constant and **N** is the Avogadro number.

The foregoing expression is the Maxwell-Boltzman law of the distribution of energy derived from classical mechanics.

Introducing the statistical weight factor \mathbf{g} , representing the number of possible quantum states having the same, or almost the same, energy \mathbf{e}_i , the appropriate form of the energy distribution law is

$$N_i = -g_i e^{-\epsilon / KT} *$$

where \mathbf{g}_0 is the statistical weight factor of the lowest energy level.

3-

Tests of the Third Law of Thermodynamics

Entropies calculated on the basis of the third law in the manner described above are usually in complete agreement with those derived from statistical considerations.

When a solid exists in two or more forms, e.g α (high temperature form) above the transition point and β (low temperature form) below the transition point, the entropy of the α form is obtained by measuring the heat capacities of the β - form up to the $\beta \rightarrow \alpha$ transition point. The entropy obtained from these results are then added to the entropy of the transition to the α - form to give the entropy of the α - form.

α- form

$$S = \int C_p / T dT$$

T Transition point $\beta \rightarrow \alpha$

$$S = \int C_p / T dT$$

β- form

4-

(i)
$$H_2$$
 $Q_v = (1 - e^{-1.439 \ \omega/T})^{-1}$
 $= (1 - e^{-1.439 \ x \ 4405/300})^{-1}$
 $= (1 - e^{-21.31})^{-1}$
 $= 1.000$

(ii) Cl₂
$$Q_v = (1 - e^{-1.439 \omega/T})^{-1}$$

= $(1 - e^{-1.439 \times 565/300})^{-1}$
= $(1 - e^{-2.710})^{-1}$
= 1.072