Benha University Faculty Of Science Botany Departement

lun – 2014

Morphology & Anatomy (221B)

Answers The Following Question:

1.	Compare between the following:	<u>12</u>
	<u>mark</u>	
	a- Collateral and bicollateral vascular bundle	
	b- b- Vascular cambium and cork cambium .	
	c- Normal – Anomalous secondary growth.	
2.	write on:	<u>12</u>
	<u>mark</u>	
	a- Secondary Xylem .	
	b- Rays.	
	c- Tyloses.	
	Dr / Ahmed Abd Elrazek	

نموذج اجابه امتحان مادة المورفولوجي والتشريح (221 ن) تاريخ الامتحان 2014/1/4 استاذ الماده د/ احمد عبدالرازق عبدالله

a:-

Collateral	Bicollateral
The xylem and phloem lie	In sush bundles the phloem is
together on the same radius in the	found to be present on both sides
position that xylem lies	of xylemsimultaneously two
inwardsthe phloem outwards	cambium strips also occur

B:-

Vascular cambium	Cork cambium
The vascular cambiumis a lateral	It is a secondary lateral meristem
meristem whoseactivity leads to	that may arise from the
an increase in the thickness or	permanent living cellsof the
girth of the shootand root by	epidermis hypodermis cortex and
adding secondary vascular tissues	the phloem cells (including the
(phloem and xylem)	phloem ray cells) its activity adds
	to the diameter of the stem or the
	root beccauseits cells divide in a
	tangential plane cutting off
	cellstowards its inner as well as
	outer face

C:-

Normalsec.growth	Anomalous sec.growth
Normal secondary growth the	(i)unusual position of the
usual developmentsthat take	cambium
place are :	(ii)abnormal functioning of the
(i)formationof a complete ring of	cambium
cambium by the formation of	(iii)formation of more than one
inter-fascicularcambail strips	ring of cambia
(ii)secondary phloem is formed	(iv)formation of extra-stelar
towards the outer side and	cambial ring
secondary xylem towards the	(v)formation of interxylary

innerside
(iii)only one ring of cambium is
formrd
(iv)the position of the cambial ring
is between primary xylem and
primary phloem and the
interfascicular cambial strips
appear at the same level the
activity of cambium is uniform
(v)only one ring of cork cambium
is formed in the extrastellarregion

phloem (vi)formation of interxylarycork

اجابة السؤال الثاني

A:- secondary xylem

the cambiam produces towards the center of the stem and root secondary xylem which comprises various elements tracheids vessel members different types of fibres parenchyma cells xylem ray cells and sometimes secretary cells the occurrence and the arrangement of these elements vary in different groups of plants the quantitative differences in the number of cells as well as in the size of the elements that exist between the species of a single genus make it possible to identify the plant by its secondary xylem alone.

B:-rays

The rays in gymnosperms may comprise parenchyma cells only i.e.homocellular rays or parenchyma cells and tracheids i.e. heterocellular rays. they ray tracheids are distinguished from the ray parenchyma mainly by the presence of bordered pit and by the absence of a protoplast the ray parenchyma cells contain living protoplasts in the sapwood and generally in the heartwood darkly coloured resins the walls of the parenchyma cells may be primary only in the large majority of gymnosperms the ray are uniseriate and they are usually from one to twenty cells high.

c:-tyloses

in many species axial and ray parenchyma cells located next to the vessels form outgrowths through the pit cavities into the lumen of the vessels when the lattttttttttttter become inactive these outgrowth are called tyloses tyloses block the lumen of vessels and reduce the permeability of the wood technically this phenomenon is selectionfor tight cooperating