Benha University

Department of Mathematics

Faculty of science (topology)

Faculty of Science

Fourth year -

Model answer:

(1) The function h is continuous because

$$h^{-1}(\mathbf{Y}) = \mathbf{X} \in \mathbf{T}, \ h^{-1}(\mathbf{\phi}) = \mathbf{\phi} \in \mathbf{T},$$

$$h^{-1}(\{\alpha\}) = \mathbf{X} \in \mathbf{T}$$
 and

$$h^{-1}(\{\alpha, \theta\}) = \{X, \phi\} \in \mathcal{T}.$$

Also, the function h is open because for each open set G of (X, τ) , we have

Which are open sets of (Y, σ)

The function h is not closed because for each closed set $F \neq \phi$ of

 (X, τ) we have $h(F) = \{\alpha\}$ is not closed of (Y, σ) .

(2)
(m1)
$$d(x, y) = |x - y| > 0$$
 and $d(x, x) = |x - x| = 0$
(m2) $d(x, y) = |x - y| = |y - x| = d(y, x)$
(m3) $d(x, z) = |x - z| = |x - y + y - z| \le |x - y| + |y - z|$
 $= d(x, y) + d(y, z).$
 $S(p, 4) = \{q \equiv (x, y) \in \Re^2 : d(q, p) < 4\}$

$$=\{(x,y)\in \Re^2 : |x-0|+|y-0|<4\}$$
$$=\{(x,y)\in \Re^2 : |x|+|y|<4\}$$

Will be the subset of \Re^2 which cuts the oX axis at (-4,0), (4,0) cuts the and cuts the oY axis at (0,-4), (0,4). Illustrated in the figure.

(3)

Since $q \in S(p, \delta)$, then $d(p, q) < \delta$. Hence $\varepsilon = \delta - d(p, q) > 0$. We take $T = T(q, \varepsilon)$. To prove that $T \subseteq S$, let $x \in T(q, \varepsilon)$. Then $d(x, q) < \varepsilon = \delta - d(p, q)$. So, by triangle inequality, we have $d(x, p) \le d(x, q) + d(q, p)$ $< [\delta - d(p, q)] + d(q, p)$ $= \delta$. Thus, $x \in S(p, \delta)$. Which proves $T \subseteq S$.

(4)

Suppose that $p \in \{x \in X : d(x, A) = 0\}$.

So that, d(p, A) = 0. Which means that every open sphere with center p will contains at least one point of A. i. e.

$$S(p, \delta) \cap A \neq \phi \quad \forall \ \delta > 0$$

$$\Rightarrow V \cap A \neq \phi \quad \forall \ V = S(p, \delta) \in \mathcal{N}_{p}$$

$$\Rightarrow (V - \{p\}) \cap A \neq \phi \quad \forall \ V \in \mathcal{N}_{p}$$

$$\Rightarrow p \in A'$$

$$\Rightarrow p \in A \cup A'$$

$$\Rightarrow p \in \overline{A}$$

$$\Rightarrow \{x \in X : d(x, A) = 0\} \subseteq \overline{A} \dots (1)$$

On the other hand, let $q \notin \{x \in X : d(x, A) = 0\}$

$$\Rightarrow d(q, A) \neq 0$$

$$\Rightarrow d(q, A) = \delta \text{ for some } \delta > 0$$

Thus, there are two facts, the first one is $q \notin A$.

The second fact is that, the open sphere $S(p, \frac{1}{2}\delta)$ with center p and radius $\frac{1}{2}\delta$ not contains any point of A. i.e.

$$S(q, \frac{1}{2}\delta) \cap A = \phi$$

$$\Rightarrow U \cap A = \phi, \text{ for some } U = S(q, \frac{1}{2}\delta) \in \mathcal{N}_{q}$$

$$\Rightarrow (U - \{q\}) \cap A = \phi, \text{ for some } U \in \mathcal{N}_{q}$$

$$\Rightarrow q \notin A'$$

$$\Rightarrow q \notin A \cup A' = \overline{A}$$

$$\Rightarrow \overline{A} \subseteq \{x \in X : d(x, A) = 0\} \dots (2)$$

$$\stackrel{(1)}{\xrightarrow{(2)}} \overline{A} = \{x \in X : d(x, A) = 0\}$$

(5)

Let (X, τ) be a T₁-space, we must show that every singleton set is

 τ -closed. That is, for each $\alpha \in X$, we show that $X - \{\alpha\}$ is a τ -open subset.

Now, let $\alpha \neq \beta$ in X, we have $\alpha \in X - \{\beta\}$ and $\beta \in X - \{\alpha\}$. Then, by Definition 5-2, there are a neighborhood U of α such that $\beta \notin U$ and a neighborhood V of β such that $\alpha \notin V$,

i.e. $\{\alpha\} \cap V = \phi$, that is $\beta \in V \subseteq X - \{\alpha\}$.

So, for every point β in X there is $G_{\beta} \in \mathcal{T}$ such that $\beta \in G_{\beta} \subseteq V \subseteq X - \{\alpha\}$

that is $\bigcup_{\beta} G_{\beta} = X - \{\alpha\}.$

Which means that the subset $X - \{\alpha\}$ is a τ -open subset.

Conversely; consider that every singleton subset $\{\alpha\}$ of X is τ -closed and $\alpha \neq \beta$ in X. Then $X - \{\alpha\}$ is a τ -open, thus it is a neighborhood of β not containing α and $X - \{\beta\}$ is a τ -open, also it is a neighborhood of α not containing β .

Hence, (X, τ) is a T₁-space.

25-5