Faculty of Science

Faculty of science (topology)

Model answer:

(1) The function h is continuous because
$h^{-1}(\mathrm{Y})=\mathrm{X} \in \tau, \quad h^{-1}(\phi)=\phi \in \tau$,
$h^{-1}(\{\alpha\})=X \in \tau$ and

$h^{-1}(\{\alpha, \theta\})=\{\mathrm{X}, \phi\} \in \tau$.

Also, the function h is open because for each open set G of (X, τ), we have

$$
h(G)= \begin{cases}\{\alpha\}, & \text { if } G \neq \phi \\ \{\phi, & \text { if } G=\phi\end{cases}
$$

Which are open sets of (Y, σ)
The function h is not closed because for each closed set $F \neq \phi$ of
(X, τ) we have $h(F)=\{\alpha\}$ is not closed of (Y, σ).
(2)
(m1) $d(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|>0$ and $d(\mathrm{x}, \mathrm{x})=|\mathrm{x}-\mathrm{x}|=0$
(m2) $d(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|=|\mathrm{y}-\mathrm{x}|=d(\mathrm{y}, \mathrm{x})$
(m3) $d(\mathrm{x}, \mathrm{z})=|\mathrm{x}-\mathrm{z}|=|\mathrm{x}-\mathrm{y}+\mathrm{y}-\mathrm{z}| \leq|\mathrm{x}-\mathrm{y}|+|\mathrm{y}-\mathrm{z}|$

$$
=d(\mathrm{x}, \mathrm{y})+d(\mathrm{y}, \mathrm{z})
$$

$$
\mathrm{S}(\mathrm{p}, 4)=\left\{\mathrm{q} \equiv(\mathrm{x}, \mathrm{y}) \in \mathfrak{R}^{2} \quad: \quad d(\mathrm{q}, \mathrm{p})<4\right\}
$$

$$
\begin{array}{lll}
=\left\{(\mathrm{x}, \mathrm{y}) \in \mathfrak{R}^{2}\right. & : & |\mathrm{x}-0|+|\mathrm{y}-0|<4\} \\
=\left\{(\mathrm{x}, \mathrm{y}) \in \mathfrak{R}^{2}\right. & : & |\mathrm{x}|+|\mathrm{y}|<4\}
\end{array}
$$

Will be the subset of \mathfrak{R}^{2} which cuts the oX axis at $(-4,0),(4,0)$ cuts the and cuts the $o \mathrm{Y}$ axis at $(0,-4),(0,4)$. Illustrated in the figure.

(3)

Since $\mathrm{q} \in \mathrm{S}(\mathrm{p}, \delta)$, then $d(\mathrm{p}, \mathrm{q})<\delta$. Hence
$\varepsilon=\delta-d(\mathrm{p}, \mathrm{q})>0$. We take $\mathrm{T}=\mathrm{T}(\mathrm{q}, \varepsilon)$.
To prove that $T \subseteq S$, let $x \in T(q, \varepsilon)$. Then $d(\mathrm{x}, \mathrm{q})<\varepsilon=\delta-d(\mathrm{p}, \mathrm{q})$.

So, by triangle inequality, we have

$$
\begin{aligned}
d(\mathrm{x}, \mathrm{p}) & \leq d(\mathrm{x}, \mathrm{q})+d(\mathrm{q}, \mathrm{p}) \\
& <[\delta-d(\mathrm{p}, \mathrm{q})]+d(\mathrm{q}, \mathrm{p}) \\
& =\delta .
\end{aligned}
$$

Thus, $x \in S(p, \delta)$.
Which proves $\mathrm{T} \subseteq \mathrm{S}$.
(4)

Suppose that $\mathrm{p} \in\{\mathrm{x} \in \mathrm{X} \quad: \quad d(\mathrm{x}, A)=0\}$.

So that, $d(\mathrm{p}, A)=0$. Which means that every open sphere with center p will contains at least one point of A. i. e.

$$
\begin{align*}
& \mathrm{S}(\mathrm{p}, \delta) \cap A \neq \phi \quad \forall \delta>0 \\
\Rightarrow & V \cap A \neq \phi \quad \forall \quad V=\mathrm{S}(\mathrm{p}, \delta) \in \mathcal{N}_{\mathrm{p}} \\
\Rightarrow & (V-\{\mathrm{p}\}) \cap A \neq \phi \quad \forall \quad V \in \mathcal{N}_{\mathrm{p}} \\
\Rightarrow & \mathrm{p} \in A^{\prime} \\
\Rightarrow & \mathrm{p} \in A \cup A^{\prime} \\
\Rightarrow & \mathrm{p} \in \bar{A} \\
\Rightarrow & \{\mathrm{x} \in \mathrm{X} \quad: \quad d(\mathrm{x}, A)=0\} \subseteq \bar{A} \tag{1}
\end{align*}
$$

On the other hand, let $\mathrm{q} \notin\{\mathrm{x} \in \mathrm{X}: \quad d(\mathrm{x}, A)=0\}$

$$
\begin{aligned}
& \Rightarrow d(\mathrm{q}, A) \neq 0 \\
& \Rightarrow d(\mathrm{q}, A)=\delta \text { for some } \delta>0
\end{aligned}
$$

Thus, there are two facts, the first one is $\mathrm{q} \notin A$.
The second fact is that, the open sphere $\mathrm{S}(\mathrm{p}, 1 / 2 \delta)$ with center p and radius $1 / 2 \delta$ not contains any point of A. i.e.

$$
\begin{align*}
& \mathrm{S}(\mathrm{q}, 1 / 2 \delta) \cap A=\phi \\
\Rightarrow & U \cap A=\phi, \text { for some } U=\mathrm{S}(\mathrm{q}, 1 / 2 \delta) \in \mathcal{N}_{\mathrm{q}} \\
\Rightarrow & (U-\{\mathrm{q}\}) \cap A=\phi, \quad \text { for some } U \in \mathcal{N}_{\mathrm{q}} \\
\Rightarrow & \mathrm{q} \notin A^{\prime} \\
\Rightarrow & \mathrm{q} \notin A \cup A^{\prime}=\bar{A} \\
\Rightarrow & \bar{A} \subseteq\{\mathrm{x} \in \mathrm{X} \quad: \quad d(\mathrm{x}, A)=0\} \quad \ldots(2) \tag{2}\\
\underset{(\mathrm{(2)}}{(\mathrm{l})} & \bar{A}=\{\mathrm{x} \in \mathrm{X} \quad: \quad d(\mathrm{x}, A)=0\}
\end{align*}
$$

Let (X, τ) be a T_{1}-space, we must show that every singleton set is
τ-closed. That is, for each $\alpha \in X$, we show that $X-\{\alpha\}$ is a τ-open subset.

Now, let $\alpha \neq \beta$ in X, we have $\alpha \in X-\{\beta\}$ and $\beta \in X-\{\alpha\}$. Then, by Definition 5-2, there are a neighborhood U of α such that $\beta \notin U$ and a neighborhood V of β such that $\alpha \notin V$,
i.e. $\{\alpha\} \cap V=\phi$, that is $\beta \in V \subseteq \mathrm{X}-\{\alpha\}$.

So, for every point β in X there is $\mathrm{G}_{\beta} \in \tau$ such that $\beta \in \mathrm{G}_{\beta} \subseteq V \subseteq X-\{\alpha\}$
that is $\underset{\beta}{\cup} \mathrm{G}_{\beta}=\mathrm{X}-\{\alpha\}$.

Which means that the subset $\mathrm{X}-\{\alpha\}$ is a τ-open subset.

Conversely; consider that every singleton subset $\{\alpha\}$ of X is τ-closed and $\alpha \neq \beta$ in X. Then $X-\{\alpha\}$ is a τ-open, thus it is a neighborhood of β not containing α and $X-\{\beta\}$ is a τ-open, also it is a neighborhood of α not containing β.

Hence, (X, τ) is a T_{1}-space.

