Faculty of Science,
Phys. Department.
Phys. 414 Electric Circuit

Answer

1- The circuit has four branches and three nodes.
2-

We apply Ohm's law and Kirchhoff's laws. By Ohm's law,

$$
\begin{equation*}
v_{1}=8 i_{1}, \quad v_{2}=3 i_{2}, \quad v_{3}=6 i_{3} \tag{2.8.1}
\end{equation*}
$$

Since the voltage and current of each resistor are related by Ohm's law as shown, we are really looking for three things: $\left(v_{1}, v_{2}, v_{3}\right)$ or $\left(i_{1}, i_{2}, i_{3}\right)$. At node a, KCL gives

$$
\begin{equation*}
i_{1}-i_{2}-i_{3}=0 \tag{2.8.2}
\end{equation*}
$$

Applying KVL to loop 1 as in Fig. 2.27(b),

$$
-30+v_{1}+v_{2}=0
$$

We express this in terms of i_{1} and i_{2} as in Eq. (2.8.1) to obtain

$$
-30+8 i_{1}+3 i_{2}=0
$$

or

$$
\begin{equation*}
i_{1}=\frac{\left(30-3 i_{2}\right)}{8} \tag{2.8.3}
\end{equation*}
$$

Applying KVL to loop 2,

$$
\begin{equation*}
-v_{2}+v_{3}=0 \quad \Longrightarrow \quad v_{3}=v_{2} \tag{2.8.4}
\end{equation*}
$$

as expected since the two resistors are in parallel. We express v_{1} and v_{2} in terms of i_{1} and i_{2} as in Eq. (2.8.1). Equation (2.8.4) becomes

$$
\begin{equation*}
6 i_{3}=3 i_{2} \quad \Longrightarrow \quad i_{3}=\frac{i_{2}}{2} \tag{2.8.5}
\end{equation*}
$$

Substituting Eqs. (2.8.3) and (2.8.5) into (2.8.2) gives

$$
\frac{30-3 i_{2}}{8}-i_{2}-\frac{i_{2}}{2}=0
$$

or $i_{2}=2 \mathrm{~A}$. From the value of i_{2}, we now use Eqs. (2.8.1) to (2.8.5) to obtain

$$
i_{1}=3 \mathrm{~A}, \quad i_{3}=1 \mathrm{~A}, \quad v_{1}=24 \mathrm{~V}, \quad v_{2}=6 \mathrm{~V}, \quad v_{3}=6 \mathrm{~V}
$$

3-

$$
\begin{array}{ccc}
6 \Omega \| 3 \Omega=\frac{6 \times 3}{6+3}=2 \Omega & \text { and } & 1 \Omega+5 \Omega=6 \Omega \\
2 \Omega+2 \Omega=4 \Omega & \text { and } & 4 \Omega \| 6 \Omega=\frac{4 \times 6}{4+6}=2.4 \Omega \\
R_{\text {eq }}=4 \Omega+2.4 \Omega+8 \Omega=14.4 \Omega &
\end{array}
$$

4-
At node 1,

$$
3=i_{1}+i_{x} \quad \Longrightarrow \quad 3=\frac{v_{1}-v_{3}}{4}+\frac{v_{1}-v_{2}}{2}
$$

Multiplying by 4 and rearranging terms, we get

$$
\begin{equation*}
3 v_{1}-2 v_{2}-v_{3}=12 \tag{3.2.1}
\end{equation*}
$$

At node 2,

$$
i_{x}=i_{2}+i_{3} \quad \Longrightarrow \quad \frac{v_{1}-v_{2}}{2}=\frac{v_{2}-v_{3}}{8}+\frac{v_{2}-0}{4}
$$

Multiplying by 8 and rearranging terms, we get

$$
\begin{equation*}
-4 v_{1}+7 v_{2}-v_{3}=0 \tag{3.2.2}
\end{equation*}
$$

At node 3,

$$
i_{1}+i_{2}=2 i_{x} \quad \Longrightarrow \quad \frac{v_{1}-v_{3}}{4}+\frac{v_{2}-v_{3}}{8}=\frac{2\left(v_{1}-v_{2}\right)}{2}
$$

Multiplying by 8 , rearranging terms, and dividing by 3 , we get

$$
\begin{equation*}
2 v_{1}-3 v_{2}+v_{3}=0 \tag{3.2.3}
\end{equation*}
$$

By Cramer' method

Thus, we find

$$
\begin{gathered}
v_{1}=\frac{\Delta_{1}}{\Delta}=\frac{48}{10}=4.8 \mathrm{~V}, \quad v_{2}=\frac{\Delta_{2}}{\Delta}=\frac{24}{10}=2.4 \mathrm{~V} \\
v_{3}=\frac{\Delta_{3}}{\Delta}=\frac{-24}{10}=-2.4 \mathrm{~V}
\end{gathered}
$$

5-
We apply KVL around the loop as shown in Fig. 2.23(b). The result is

$$
\begin{equation*}
-12+4 i+2 v_{o}-4+6 i=0 \tag{2.6.1}
\end{equation*}
$$

Applying Ohm's law to the $6-\Omega$ resistor gives

$$
\begin{equation*}
v_{o}=-6 i \tag{2.6.2}
\end{equation*}
$$

Substituting Eq. (2.6.2) into Eq. (2.6.1) yields

$$
-16+10 i-12 i=0 \quad \Longrightarrow \quad i=-8 \mathrm{~A}
$$

and $v_{o}=48 \mathrm{~V}$.
6-
Applying KVL to the two loops, we obtain

$$
\begin{gathered}
12 i_{1}-4 i_{2}+v_{s}=0 \\
-4 i_{1}+16 i_{2}-3 v_{x}-v_{s}=0
\end{gathered}
$$

But $v_{x}=2 i_{1}$. Equation (4.1.2) becomes

$$
-10 i_{1}+16 i_{2}-v_{s}=0
$$

Adding Eqs. (4.1.1) and (4.1.3) yields

$$
2 i_{1}+12 i_{2}=0 \quad \Longrightarrow \quad i_{1}=-6 i_{2}
$$

Substituting this in Eq. (4.1.1), we get

$$
-76 i_{2}+v_{s}=0 \quad \Longrightarrow \quad i_{2}=\frac{v_{s}}{76}
$$

When $v_{s}=12 \mathrm{~V}$,

$$
i_{o}=i_{2}=\frac{12}{76} \mathrm{~A}
$$

7-
The circuit in Fig. 4.9 involves a dependent source, which must be left intact. We let

$$
\begin{equation*}
i_{o}=i_{o}^{\prime}+i_{o}^{\prime \prime} \tag{4.4.1}
\end{equation*}
$$

where i_{o}^{\prime} and $i_{o}^{\prime \prime}$ are due to the 4-A current source and $20-\mathrm{V}$ voltage source respectively. To obtain i_{o}^{\prime}, we turn off the $20-\mathrm{V}$ source so that we have the circuit in Fig. 4.10(a). We apply mesh analysis in order to obtain i_{o}^{\prime}. For loop 1,

$$
\begin{equation*}
i_{1}=4 \mathrm{~A} \tag{4.4.2}
\end{equation*}
$$

For loop 2,

$$
\begin{equation*}
-3 i_{1}+6 i_{2}-1 i_{3}-5 i_{o}^{\prime}=0 \tag{4.4.3}
\end{equation*}
$$

For loop 3,

$$
\begin{equation*}
-5 i_{1}-1 i_{2}+10 i_{3}+5 i_{o}^{\prime}=0 \tag{4.4.4}
\end{equation*}
$$

But at node 0,

$$
\begin{equation*}
i_{3}=i_{1}-i_{o}^{\prime}=4-i_{o}^{\prime} \tag{4.4.5}
\end{equation*}
$$

Substituting Eqs. (4.4.2) and (4.4.5) into Eqs. (4.4.3) and (4.4.4) gives two simultaneous equations

$$
\begin{align*}
& 3 i_{2}-2 i_{o}^{\prime}=8 \tag{4.4.6}\\
& i_{2}+5 i_{o}^{\prime}=20 \tag{4.4.7}
\end{align*}
$$

which can be solved to get

$$
\begin{equation*}
i_{o}^{\prime}=\frac{52}{17} \mathrm{~A} \tag{4.4.8}
\end{equation*}
$$

To obtain $i_{o}^{\prime \prime}$, we turn off the 4-A current source so that the circuit becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

$$
\begin{equation*}
6 i_{4}-i_{5}-5 i_{o}^{\prime \prime}=0 \tag{4.4.9}
\end{equation*}
$$

and for loop 5,

$$
\begin{equation*}
-i_{4}+10 i_{5}-20+5 i_{o}^{\prime \prime}=0 \tag{4.4.10}
\end{equation*}
$$

But $i_{5}=-i_{o}^{\prime \prime}$. Substituting this in Eqs. (4.4.9) and (4.4.10) gives

$$
\begin{gather*}
6 i_{4}-4 i_{o}^{\prime \prime}=0 \tag{4.4.11}\\
i_{4}+5 i_{o}^{\prime \prime}=-20 \tag{4.4.12}
\end{gather*}
$$

which we solve to get

$$
i_{o}^{\prime \prime}=-\frac{60}{17} \mathrm{~A}
$$

Now substituting Eqs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

$$
i_{o}=-\frac{8}{17}=-0.4706 \mathrm{~A}
$$

8-
Applying KCL to node a, we obtain

$$
3+0.5 i_{o}=i_{o} \quad \Longrightarrow \quad i_{o}=6 \mathrm{~A}
$$

For the $4-\Omega$ resistor, Ohm's law gives

$$
v_{o}=4 i_{o}=24 \mathrm{~V}
$$

