الفصل الدراسي الثاني: 2016/2015

الفرقة الأولى الزمن: ساعتان

2016/5/28

Part A: Electromagnetism

 Q_1 - Choose the right answer:

[24 Marks]

- ${f 1}$ The electric field at a distance of 10 cm from an isolated point particle with a charge of 2×10^{-9} is $(\epsilon_o = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2)$:
- A. 1.8N/C
- B. 180N/C
- C. 18N/C
- 1800N/C
- **2** Two charged particles $q_1 = 2C$ and $q_2 = -4C$ are arranged as shown. A third charge Q = +1 C, is located exactly at the middle between the two charges q_1 and q_2 . What is the correct from the following:

- A. The electric force F_1 between q_1 and Q is higher than that F_2 between q_2 and Q
- The electric force F_1 between g_1 and Q is lower than that F_2 between g_2 and O
- C. Both forces F_1 and F_2 are equal
- None of these answers
- 3- The electric field between sheets with equal charges in magnitude and different in signs is

A.
$$E = \frac{Q}{A\epsilon_0}$$

B.
$$E = \frac{Q\varepsilon_0}{A}$$
 C. $E = \frac{Q}{A}$

C.
$$E = \frac{Q}{A}$$

D.
$$E=0$$

- 4- Calculate the electric flux due to a charge q = 5 C inside a Gauss's surface of area 7.5 cm 2 . (\$\epsilon_0 = 8.85 \times 10^{-12} \ C^2/N.m^2\$) A. 7.53 \times 10^{14} \ Nm^2/C

B. $4.24 \times 10^8 \text{ Nm}^2/\text{C}$

C. $4.43 \times 10^{-11} \text{ Nm}^2/\text{C}$

D. $5.65 \times 10^{11} \text{ Nm}^2/\text{C}$

- **5**-The potential difference ΔV equals to:
- A. $\Delta V = q/4\pi\epsilon_0 r$
- B. $\Delta V = g/4\pi\epsilon_0 r^2$
- C. $\Delta V = gE$ D. $\Delta V = g/\epsilon_0$
- **6** For the electric field given by $E = \phi / A \cos \alpha$, which of the following is correct?
- A. "φ" is the electric potential
- B. " α " is the angle between E and A
- C. "A" is the Gauss's surface
- **D.** None of these answers.
- 7- The potential difference between two points is 100V. If a particle with a charge of 2C is transported from one of these points to the other, the magnitude of the work done is:
- A. 2 J
- B. 50 J
- C. 100 J
- D. 200 J
- **8** The ratio of the magnitude of the electrical potential energy to the charge is defined as:

A. Electric Potential

B. Electric Field

C. Electric capacity

D. Work

9-The capacitance of a parallel plate capacitor that has plates of dimensions 4 cm by 3cm separated by 1 mm thickness of paper (k=3.7, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{N.m}^2$) is .

A. 20 pF

B. 30 pF

C. 40 pF

D. 40 uF

10- The centripetal force F equals to:

A. F = v/r

B. $F = v^2/r$ C. v/r^2

D. v^2/r^2

11- A parallel-plate capacitor with air between the plates has an area $A = 2 \times 10^{-4}$ m² and a plate separation d = 1 mm. What is the capacitance? $(\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2)$

A. 44.3 10⁻¹² F

B. 44.3 μF

C. 1.77×10^{-12} **F** D. 1.77 μ F

12-Four wires meet at a junction. The first i_1 carries 4A into the junction, the second i2carries 5Aout of the junction, and the third i₃carries 2A out of the junction. The fourth i₄carries:

- 7A into the junction
- B. 1A into the junction
- C. 3A out of the junction
- D. 3 A into the junction

13- The unit of resistivity is:

- Α Ω
- B. Ω .m
- C. Ω/m
- D. Ω/m^2

14- The total number of electric field lines for point charge depends on

- A. Distance from the source
- B. Charge
- C. enclosed surface D. dimensions

15- The equivalent resistance between points 1 and 2 of the circuit shown is:

- Α. 3 Ω $C.5\Omega$
- $B 4 \Omega$
- D. 6 Ω

16- The magnetic field B is measured in units of:

- A. N/A
- C. N/C
- D. T/C

 Q_2 - Answer the two questions (16 Marks)

 $\bf A$) Consider an electron travels with initial velocity v_i to the right between two flat metal plates of length L and separation d as shown in figure. Derive a formula to calculate the axial velocity 'v_v' and the axial displacement 'y'.

ANS:

E=V/d

F = ma = eE = eV/d

V=eVt/md

Y=Vt= evt²/md

B) Four capacitors are connected as shown in Figure.

- 1- Find the equivalent capacitance between points a and b.
- 2-If we applied a potential difference ΔV_{ab} =15 V,calculate the charge on the capacitor of 4 μF .


```
ANS;

In series
1/C_{eq} = 1/6 + 1/12 = 3/12 = \frac{1}{4}
Then C= 4 uf
The
4 uf capacitors is parallel with 8 uf
C= 4+8= 12
Then the total capacitance = 1/c = 1/12 + 1/4 = 4/12
equivalent capacitance = 3 \muF
total charge = total capacitance x volt
3 x15 = 45 uC
Q at 4 uf = 22.5 uC
```

Constants: $e = 1.6 \times 10^{-19} \ C \qquad \epsilon_o = 8.85 \times 10^{-12} \ C^2 / N.m^2$