كلية العلـوم

Part A: Electromagnetism

Q_{1} - Choose the right answer:

1- The electric field at a distance of 10 cm from an isolated point particle with a charge of 2×10^{-9} is $\left(\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}\right)$:
A. $1.8 \mathrm{~N} / \mathrm{C}$
B. $180 \mathrm{~N} / \mathrm{C}$
C. $18 \mathrm{~N} / \mathrm{C}$
D. $1800 \mathrm{~N} / \mathrm{C}$

2- Two charged particles $\mathrm{q}_{1}=2 \mathrm{C}$ and $\mathrm{q}_{2}=-4 \mathrm{C}$ are arranged as shown. A third charge $\mathrm{Q}=+1 \mathrm{C}$, is located exactly at the middle between the two charges q_{1} and q_{2}. What is the correct from the following:

A. The electric force F_{1} between q_{1} and Q is higher than that F_{2} between q_{2} and Q

B. The electric force F_{1} between q_{1} and Q is lower than that F_{2} between q_{2} and \mathbf{Q}

C. Both forces F_{1} and F_{2} are equal
D. None of these answers

3- The electric field between sheets with equal charges in magnitude and different in signs is
A. $\mathrm{E}=\frac{\mathrm{Q}}{\mathrm{A} \varepsilon_{0}}$
B. $E=\frac{Q \varepsilon_{0}}{A}$
C. $E=\frac{Q}{A}$
D. $E=0$

4- Calculate the electric flux due to a charge $\mathrm{q}=5 \mathrm{C}$ inside a Gauss's surface of area $7.5 \mathrm{~cm}^{2} . \quad\left(\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}\right)$
A. $7.53 \times 10^{14} \mathrm{Nm}^{2} / \mathrm{C}$
B. $4.24 \times 10^{8} \mathrm{Nm}^{2} / \mathrm{C}$
C. $4.43 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{C}$
D. $5.65 \times 10^{11} \mathrm{Nm}^{2} / \mathrm{C}$

5-The potential difference $\Delta \mathrm{V}$ equals to:
A. $\Delta V=q / 4 \pi \varepsilon_{0} \mathbf{r}$
B. $\Delta \mathrm{V}=\mathrm{q} / 4 \pi \varepsilon_{0} \mathrm{r}^{2}$
C. $\Delta \mathrm{V}=\mathrm{qE}$
D. $\Delta \mathrm{V}=\mathrm{q} / \varepsilon_{0}$

6- For the electric field given by $\mathrm{E}=\phi / \mathrm{A} \cos \alpha$, which of the following is correct?
A. " ϕ " is the electric potential
B. " α " is the angle between E and A
C. "A" is the Gauss's surface
D. None of these answers.

7- The potential difference between two points is 100 V . If a particle with a charge of 2 C is transported from one of these points to the other, the magnitude of the work done is:
A. 2 J
B. 50 J
C. 100 J
D. 200 J

8- The ratio of the magnitude of the electrical potential energy to the charge is defined as:
A. Electric Potential
B. Electric Field
C. Electric capacity
D. Work

9-The capacitance of a parallel plate capacitor that has plates of dimensions 4 cm by 3 cm separated by 1 mm thickness of paper ($\mathrm{k}=3.7, \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$) is .
A. 20 pF
B. 30 pF
C. 40 pF
D. $40 \mu \mathrm{~F}$

10- The centripetal force F equals to:
A. $F=v / r$
B. $F=v^{2} / r$
C. $\mathrm{v} / \mathrm{r}^{2}$
D. v^{2} / r^{2}

11- A parallel-plate capacitor with air between the plates has an area $\mathrm{A}=2 \times 10^{-4} \mathrm{~m}^{2}$ and a plate separation $\mathrm{d}=1 \mathrm{~mm}$. What is the capacitance? $\left(\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}\right)$
A. $44.310^{-12} \mathrm{~F}$
B. $44.3 \mu \mathrm{~F}$
C. $\mathbf{1 . 7 7} \times \mathbf{1 0}^{-12} \mathrm{~F} \quad$ D. $1.77 \mu \mathrm{~F}$

12-Four wires meet at a junction. The first i_{1} carries 4 A into the junction, the second i_{2} carries 5Aout of the junction, and the third i_{3} carries 2A out of the junction. The fourth i_{4} carries:
A. 7A into the junction
B. 1 A into the junction
C. 3A out of the junction
D. 3 A into the junction

13- The unit of resistivity is:
A. Ω
B. Ω.m
C. Ω / m
D. Ω / m^{2}

14- The total number of electric field lines for point charge depends on
A. Distance from the source
B. Charge
C. enclosed surface
D. dimensions

15- The equivalent resistance between points 1 and 2 of the circuit shown is:
A. 3Ω
B. 4Ω
C. 5Ω
D. 6Ω

16- The magnetic field B is measured in units of:
A. N/A
B. T
C. N/C
D. T / C
Q_{2} - Answer the two questions (16 Marks)
A) Consider an electron travels with initial velocity v_{i} to the right between two flat metal plates of length L and separation d as shown in figure. Derive a formula to calculate the axial velocity ' vy ' and the axial displacement ' y '.

ANS:
$\mathrm{E}=\mathrm{V} / \mathrm{d}$
$F=m a=e E=e V / d$
$\mathrm{V}=\mathrm{eVt} / \mathrm{md}$
$\mathrm{Y}=\mathrm{Vt}=\mathrm{evt}^{2} / \mathrm{md}$
B) Four capacitors are connected as shown in Figure.

1- Find the equivalent capacitance between points a and b.
2-If we applied a potential difference $\Delta \mathrm{V}_{\mathrm{ab}}=15 \mathrm{~V}$,calculate the charge on the capacitor of $4 \mu \mathrm{~F}$.

ANS;
In series
$1 / \mathrm{C}_{\text {eq }}=1 / 6+1 / 12=3 / 12=1 / 4$

Then $\mathrm{C}=4$ uf
The
4 uf capacitors is parallel with 8 uf
$\mathrm{C}=4+8=12$
Then the total capacitance $=1 / \mathrm{c}=1 / 12+1 / 4=4 / 12$
equivalent capacitance $=3 \boldsymbol{\mu}$
total charge $=$ total capacitance \times volt
$3 \times 15=45 \mathrm{uC}$
Q at $4 \mathbf{u f}=22.5 \mathrm{uC}$

Constants: $\quad \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$

