تاريخ الامتحان: 31 /2016		د./ صلاح عيد إبراهيم حمزة
الزمن 3 ساعات	نظام ساعات معتمدة	دور يناير 2017
مادة (إحصائية)		كلية العلوم
الفرقة الثالثة (فيزياء)		جامعة بنها
	الفرقة الثالثة (فيزياء) مادة (إحصائية) الزمن 3 ساعات تحان: 31 /2016	الفرقة الثالثة (فيزياء) مادة (إحصائية) نظام ساعات معتمدة الزمن 3 ساعات تاريخ الامتحان: 31 /2016

1. Prove the following relation for the occupation number n_i due to Boltzmann distribution $n_i = \sum_i \frac{N}{Z} e^{-\beta\epsilon}$ ------ Solution ------

Let the number of allowed states associated with the energy ε_i be g_i . Let us first calculate the number of ways of putting n_1 particles of N particles in one box, then n_2 out of $N - n_1$ in second, and so on until we have exhausted all of the particles. The number of ways of choosing n_1 particles out of N particles is given by

$$W_1 = \frac{N!}{(N - n_1)! \ n_1!} \tag{1}$$

and the number of choosing n_2 out of $N - n_1$ is:

$$W_2 = \frac{(N - n_1)!}{(N - n_1 - n_2)! n_2!}$$
(2)

and the number of ways of achieving this arrangement is

$$W = W_{1} \cdot W_{2} \cdots$$

$$= \frac{N!}{(N - n_{1})! n_{1}!} \cdot \frac{(N - n_{1})!}{(N - n_{1} - n_{2})! n_{2}!} \cdots$$

$$= \frac{N!}{n_{1}! n_{2}! \cdots n_{i}!}$$

$$W = N! \prod_{i} \frac{g_{i}^{n_{i}}}{n_{i}}$$

$$W = \ln N! + \sum_{i} (n \ln g_{i} - n \ln n_{i}!)$$

$$= N \ln N + \sum_{i} (n \ln g_{i} - n \ln n_{i})$$
(3)

To obtain the most probable distribution, we maximize Eq. (3) with dN = 0:

$$\delta \ln W = \sum_{i} (\ln g_i - n \ln n_i - \frac{n_i}{n_i}) \delta n_i = 0$$

$$\delta \ln W = \sum_{i} (\ln g_i - n \ln n_i - 1) \delta n_i = 0$$

but

$$\delta N = \sum_{i} \delta n_{i} = 0$$

$$\delta U = \sum_{i} \varepsilon_{i} \delta n_{i} = 0$$
(4)
(5)

multiply Eq. (4) by $\alpha + 1$ and Eq. (5) bt – B and add the resulting equations to each other:

$$\sum_{i} (\ln g_{i} - n \ln n_{i} + \alpha - \beta \varepsilon_{i}) \delta n_{i} = 0$$
(6)

Since n_i is vary independent,

$$\ln g_i - n \ln n_i + \alpha - \beta \varepsilon_i = 0$$

or

$$\ln\frac{g_i}{n_i} + \alpha - \beta \varepsilon_i = 0 \tag{7}$$

Solving Eq. (7) for n_i gives

$$n_i = \frac{N}{Z} g_i e^{-\beta \varepsilon_i}$$

2. Debye treated with crystal as a continuous elastic medium and his expression of C_V is a good approximation to the Duling-Petit law. Discuss the previous paragraph.

The specific heat depends on the temperature as in the figure. At high temperature the value of C_v is close to 3R

------ Solution ------

In the Debye model, the frequency of the lattice vibration covrs a wide range of values. The lowest frequency in the Debye model is v = 0 and the highest allowed is v_D such that the integral of g(v)dv from 0 to v_D equals 3N, see Fig. (2)

Thus

$$\int_{0}^{v_{\rm D}} g(v) dv = 3N$$

By using the equation

$$g(v) = \frac{3V}{2\pi^2 c^3} v^2$$

We get

$$\frac{3V}{2\pi^2 c^3} \int_0^{v_D} v^2 dv = 3N$$
$$\frac{3V}{2\pi^2 c^3} \frac{v_d^3}{3} = 3N$$
$$v_d^3 = \frac{6\pi^2 N c^3}{V}$$

Where ν_D is called Debye frequency. In terms of ν_D the function $g(\nu)$ is obtained as

$$g(v) = \frac{9N}{v_D^3} v^2 \qquad \qquad 0 \le v \le v_D$$

This summarizes the Debye theory of crystals.

3. Prove the following relation for the occupation number n_i due to Bose-Einstein Statistics $n_i = \frac{g_i}{e^{(\alpha + \varepsilon_i)/KT} - 1}$.

Let the number of allowed states associated with the energy ε_i be g_i . Let us first calculate the number of ways of putting n_1 particles of N particles in one box, then n_2 out of $N - n_1$ in second, and so on until we have exhausted all of the particles. The number of ways of choosing n_1 particles out of N particles is given by

$$W_1 = \frac{N!}{(N - n_1)! \ n_1!} \tag{1}$$

and the number of choosing n_2 out of $N - n_1$ is:

$$W_2 = \frac{(N - n_1)!}{(N - n_1 - n_2)! n_2!}$$
(2)

and the number of ways of achieving this arrangement is

$$W = W_{1} \cdot W_{2} \cdots$$

$$= \frac{N!}{(N - n_{1})! n_{1}!} \cdot \frac{(N - n_{1})!}{(N - n_{1} - n_{2})! n_{2}!} \cdots$$

$$= \frac{N!}{n_{1}! n_{2}! \cdots n_{i}!}$$

$$W = N! \prod_{i} \frac{g_{i}^{n_{i}}}{n_{i}} \qquad (3)$$

$$\ln W = \ln N! + \sum_{i} (n \ln g_i - n \ln n_i!)$$
$$= N \ln N + \sum_{i} (n \ln g_i - n \ln n_i)$$

To obtain the most probable distribution, we maximize Eq. (3) with dN = 0:

$$\delta \ln W = \sum_{i} (\ln g_i - n \ln n_i - \frac{n_i}{n_i}) \delta n_i = 0$$

$$\delta \ln W = \sum_{i} (\ln g_i - n \ln n_i - 1) \delta n_i = 0$$

but

$$\delta N = \sum_{i} \delta n_{i} = 0 \tag{4}$$

$$\delta U = \sum_{i} \varepsilon_{i} \delta n_{i} = 0 \tag{5}$$

multiply Eq. (4) by α +1 and Eq. (5) bt – B and add the resulting equations to each other:

$$\sum_{i} (\ln g_{i} - n \ln n_{i} + \alpha - \beta \varepsilon_{i}) \delta n_{i} = 0$$
(6)

Since n_i is vary independent,

$$\ln g_i - n \ln n_i + \alpha - \beta \varepsilon_i = 0$$

or

$$\ln\frac{g_i}{n_i} + \alpha - \beta \varepsilon_i = 0 \tag{7}$$

Solving Eq. (7) for n_i gives

$$n_i = \frac{N}{Z} g_i e^{-\beta \varepsilon_i}$$

4. Write a short note about the vibrational spectrum of crystals.

Let us examine the propagation of an elastic wave in a long bar. The wave equation in one dimension is

$$\frac{\partial^2 \varphi}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = 0$$
 (1)

The solution of this equation is

$$\varphi = A e^{i(kx - vt)}$$
⁽²⁾

Substituting Eq. (2) in (1) leads to

$$v = ck \tag{3}$$

The last equation is known as the dispersion relation which represents a straight line as in the figure

The boundary conditions require that

$$\varphi(0) = \varphi(L) \tag{4}$$

Substituting by Eq. (2) in (4) gives

$$k = n \frac{2\pi}{L}, \quad n = 0, \pm 1, \pm 2, ...$$
 (5)

The density of states is

$$g(v)dv = \frac{L}{2\pi}dk$$
(6)

In one dimension

$$g(v) = \frac{L}{2\pi} \frac{1}{c}$$

In three dimension

$$g(v) = \frac{3V}{2\pi^2} \frac{v^2}{c^3}$$
(7)

Q5. (a) Differentiate between bosons and fermions.

------ Solution ------

fermions	Boson
Anti-Symmetric wave function	Symmetric wave function
Odd atoms - Protons - electrons	Even atoms - photons
Fermi Dirac statistics	Bose-Einstein statistics

Q5 (b) Discus in details the black body radiation phenomena

------ Solution ------

The Black body radiations can be considered as the photon gas. Photons are taken as bosons and they are obey BE statistics

$$n_i = \frac{g_i}{e^{\varepsilon_i / kT} - 1} \tag{1}$$

We can write

$$dn = \frac{g(v)dv}{e^{hvlKT} - 1}$$
(2)

The translational kinetic energy for a particle in a cubical box is

$$\varepsilon = \frac{h^2}{8mL^2} \left(n_x^2 + n_y^2 + n_z^2 \right)$$
(3)

In gama space

$$r^2 = n_x^2 + n_y^2 + n_z^2 \tag{4}$$

$$r^2 = \frac{8mL^2}{h^2}\varepsilon\tag{5}$$

So

$$gd\varepsilon = \frac{2\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} d\varepsilon$$
(6)

Since the photon has no rest mass, so we can write

$$gdv = \frac{4\pi V}{h^3} \frac{h^2 v^2}{c^2} \frac{h}{c} dv$$
⁽⁷⁾

The energy per unit volume, energy density, is

$$\rho d\nu = \frac{dn}{V} h\nu \tag{8}$$

So

$$\rho d\nu = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{h\nu/KT} - 1} d\nu \tag{9}$$

Which represents Planck's radiation law