مـادة (إحصائية)
كلية اللعوم
الزمن 3 ساعات
نظام ساعات معتمدة
دور يناير 2017
د./ صلاح عيد إبراهيم حمزة تاريخ الامتحان: 2016/12 31

1. Prove the following relation for the occupation number n_{i} due to Boltzmann distribution $n_{i}=\sum_{i} \frac{N}{Z} e^{-\beta \varepsilon}$

Solution

Let the number of allowed states associated with the energy ε_{i} be g_{i}. Let us first calculate the number of ways of putting n_{1} particles of N particles in one box, then n_{2} out of $\mathrm{N}-\mathrm{n}_{1}$ in second, and so on until we have exhausted all of the particles. The number of ways of choosing n_{1} particles out of N particles is given by

$$
\begin{equation*}
\mathrm{W}_{1}=\frac{\mathrm{N}!}{\left(\mathrm{N}-\mathrm{n}_{1}\right)!\mathrm{n}_{1}!} \tag{1}
\end{equation*}
$$

and the number of choosing n_{2} out of $\mathrm{N}-\mathrm{n}_{1}$ is:

$$
\begin{equation*}
\mathrm{W}_{2}=\frac{\left(\mathrm{N}-\mathrm{n}_{1}\right)!}{\left(\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}\right)!\mathrm{n}_{2}!} \tag{2}
\end{equation*}
$$

and the number of ways of achieving this arrangement is

$$
\begin{align*}
& \mathrm{W}=\mathrm{W}_{1} \cdot \mathrm{~W}_{2} \cdots \\
& =\frac{\mathrm{N}!}{\left(\mathrm{N}-\mathrm{n}_{1}\right)!\mathrm{n}_{1}!} \cdot \frac{\left(\mathrm{N}-\mathrm{n}_{1}\right)!}{\left(\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}\right)!\mathrm{n}_{2}!} \cdots \\
& =\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\cdots} \mathrm{n}_{\mathrm{i}}! \\
& \begin{aligned}
\mathrm{W} & =\mathrm{N}!\prod_{\mathrm{i}} \frac{\mathrm{~g}_{\mathrm{i}}^{\mathrm{n}_{\mathrm{i}}}}{\mathrm{n}_{\mathrm{i}}}
\end{aligned} \tag{3}\\
& \ln \mathrm{~W}=\ln \mathrm{N}!+\sum_{\mathrm{i}}\left(\mathrm{n} \ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}!\right) \\
& \quad=\mathrm{N} \ln \mathrm{~N}+\sum_{\mathrm{i}}\left(\mathrm{n} \ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}\right)
\end{align*}
$$

To obtain the most probable distribution, we maximize Eq. (3) with $d N=0:$

$$
\begin{aligned}
& \delta \ln \mathrm{W}=\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}-\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}\right) \delta \mathrm{n}_{\mathrm{i}}=0 \\
& \quad \delta \ln \mathrm{~W}=\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}-1\right) \delta \mathrm{n}_{\mathrm{i}}=0
\end{aligned}
$$

but

$$
\begin{align*}
& \delta \mathrm{N}=\sum_{\mathrm{i}} \delta \mathrm{n}_{\mathrm{i}}=0 \tag{4}\\
& \delta \mathrm{U}=\sum_{\mathrm{i}} \varepsilon_{\mathrm{i}} \delta \mathrm{n}_{\mathrm{i}}=0 \tag{5}
\end{align*}
$$

multiply Eq. (4) by $\alpha+1$ and Eq. (5) bt -B and add the resulting equations to each other:

$$
\begin{equation*}
\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}+\alpha-\beta \varepsilon_{\mathrm{i}}\right) \delta \mathrm{n}_{\mathrm{i}}=0 \tag{6}
\end{equation*}
$$

Since n_{i} is vary independent,

$$
\ln \mathrm{g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}+\alpha-\beta \varepsilon_{\mathrm{i}}=0
$$

or

$$
\begin{equation*}
\ln \frac{\mathrm{g}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}+\alpha-\beta \varepsilon_{\mathrm{i}}=0 \tag{7}
\end{equation*}
$$

Solving Eq. (7) for n_{i} gives

$$
\mathrm{n}_{\mathrm{i}}=\frac{\mathrm{N}}{\mathrm{Z}} \mathrm{~g}_{\mathrm{i}} \mathrm{e}^{-\beta \varepsilon_{\mathrm{i}}}
$$

2. Debye treated with crystal as a continuous elastic medium and his expression of C_{V} is a good approximation to the Duling-Petit law.

Discuss the previous paragraph.

Solution

The specific heat depends on the temperature as in the figure. At high temperature the value of C_{v} is close to 3 R

In the Debye model, the frequency of the lattice vibration covrs a wide range of values. The lowest frequency in the Debye model is $v=0$ and the highest allowed is v_{D} such that the integral of $g(v) d v$ from 0 to v_{D} equals 3 N , see Fig. (2)

Thus
$\int_{0}^{v_{D}} g(v) d v=3 \mathrm{~N}$
By using the equation
$g(v)=\frac{3 V}{2 \pi^{2} c^{3}} v^{2}$
We get

$$
\frac{3 \mathrm{~V}}{2 \pi^{2} \mathrm{c}^{3}} \int_{0}^{v_{\mathrm{D}}} v^{2} \mathrm{~d} v=3 \mathrm{~N}
$$

$\frac{3 \mathrm{~V}}{2 \pi^{2} \mathrm{c}^{3}} \frac{v_{\mathrm{d}}^{3}}{3}=3 \mathrm{~N}$
$v_{d}^{3}=\frac{6 \pi^{2} \mathrm{Nc}^{3}}{\mathrm{~V}}$
Where v_{D} is called Debye frequency. In terms of v_{D} the function $g(v)$ is obtained as

$$
g(v)=\frac{9 \mathrm{~N}}{v_{\mathrm{D}}^{3}} v^{2} \quad 0 \leq v \leq v_{\mathrm{D}}
$$

This summarizes the Debye theory of crystals.
3. Prove the following relation for the occupation number ${ }^{n_{i}}$ due to Bose-Einstein Statistics $n_{i}=\frac{g_{i}}{e^{\left(\alpha+\varepsilon_{i}\right) / K T}-1}$.

Solution

Let the number of allowed states associated with the energy ε_{i} be g_{i}. Let us first calculate the number of ways of putting n_{1} particles of N particles in one box, then n_{2} out of $\mathrm{N}-\mathrm{n}_{1}$ in second, and so on until we have exhausted all of the particles. The number of ways of choosing n_{1} particles out of N particles is given by

$$
\begin{equation*}
\mathrm{W}_{1}=\frac{\mathrm{N}!}{\left(\mathrm{N}-\mathrm{n}_{1}\right)!\mathrm{n}_{1}!} \tag{1}
\end{equation*}
$$

and the number of choosing n_{2} out of $\mathrm{N}-\mathrm{n}_{1}$ is:

$$
\begin{equation*}
\mathrm{W}_{2}=\frac{\left(\mathrm{N}-\mathrm{n}_{1}\right)!}{\left(\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}\right)!\mathrm{n}_{2}!} \tag{2}
\end{equation*}
$$

and the number of ways of achieving this arrangement is

$$
\begin{align*}
\mathrm{W} & =\mathrm{W}_{1} \cdot \mathrm{~W}_{2} \cdots \\
& =\frac{\mathrm{N}!}{\left(\mathrm{N}-\mathrm{n}_{1}\right)!\mathrm{n}_{1}!} \cdot \frac{\left(\mathrm{N}-\mathrm{n}_{1}\right)!}{\left(\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}\right)!\mathrm{n}_{2}!} \cdots \\
& =\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\cdots} \mathrm{n}_{\mathrm{i}}! \\
\mathrm{W} & =\mathrm{N}!\prod_{\mathrm{i}} \frac{\mathrm{~g}_{\mathrm{i}}^{\mathrm{n}_{\mathrm{i}}}}{\mathrm{n}_{\mathrm{i}}} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
\ln \mathrm{W} & =\ln \mathrm{N}!+\sum_{\mathrm{i}}\left(\mathrm{n} \ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}!\right) \\
& =\mathrm{N} \ln \mathrm{~N}+\sum_{\mathrm{i}}\left(\mathrm{n} \ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}\right)
\end{aligned}
$$

To obtain the most probable distribution, we maximize Eq. (3) with $\mathrm{dN}=0$:

$$
\begin{aligned}
& \delta \ln \mathrm{W}=\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}-\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}\right) \delta \mathrm{n}_{\mathrm{i}}=0 \\
& \quad \delta \ln \mathrm{~W}=\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}-1\right) \delta \mathrm{n}_{\mathrm{i}}=0
\end{aligned}
$$

but

$$
\begin{align*}
& \delta \mathrm{N}=\sum_{\mathrm{i}} \delta \mathrm{n}_{\mathrm{i}}=0 \tag{4}\\
& \delta \mathrm{U}=\sum_{\mathrm{i}} \varepsilon_{\mathrm{i}} \delta \mathrm{n}_{\mathrm{i}}=0 \tag{5}
\end{align*}
$$

multiply Eq. (4) by $\alpha+1$ and Eq. (5) bt -B and add the resulting equations to each other:

$$
\begin{equation*}
\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}+\alpha-\beta \varepsilon_{\mathrm{i}}\right) \delta \mathrm{n}_{\mathrm{i}}=0 \tag{6}
\end{equation*}
$$

Since n_{i} is vary independent,

$$
\ln \mathrm{g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}+\alpha-\beta \varepsilon_{\mathrm{i}}=0
$$

or

$$
\begin{equation*}
\ln \frac{\mathrm{g}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}+\alpha-\beta \varepsilon_{\mathrm{i}}=0 \tag{7}
\end{equation*}
$$

Solving Eq. (7) for n_{i} gives
$\mathrm{n}_{\mathrm{i}}=\frac{\mathrm{N}}{\mathrm{Z}} \mathrm{g}_{\mathrm{i}} \mathrm{e}^{-\beta \varepsilon_{\mathrm{i}}}$

4. Write a short note about the vibrational spectrum of crystals.

Solution

Let us examine the propagation of an elastic wave in a long bar. The wave equation in one dimension is

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}}-\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2} \varphi}{\partial \mathrm{t}^{2}}=0 \tag{1}
\end{equation*}
$$

The solution of this equation is

$$
\begin{equation*}
\varphi=\mathrm{Ae}^{\mathrm{i}(\mathrm{kx}-\nu \mathrm{vt})} \tag{2}
\end{equation*}
$$

Substituting Eq. (2) in (1) leads to

$$
\begin{equation*}
v=\mathrm{ck} \tag{3}
\end{equation*}
$$

The last equation is known as the dispersion relation which represents a straight line as in the figure

The boundary conditions require that

$$
\begin{equation*}
\varphi(0)=\varphi(\mathrm{L}) \tag{4}
\end{equation*}
$$

Substituting by Eq. (2) in (4) gives

$$
\begin{equation*}
\mathrm{k}=\mathrm{n} \frac{2 \pi}{\mathrm{~L}}, \quad \mathrm{n}=0, \pm 1, \pm 2, \ldots \tag{5}
\end{equation*}
$$

The density of states is

$$
\begin{equation*}
\mathrm{g}(v) \mathrm{d} v=\frac{\mathrm{L}}{2 \pi} \mathrm{dk} \tag{6}
\end{equation*}
$$

In one dimension

$$
\mathrm{g}(v)=\frac{\mathrm{L}}{2 \pi} \frac{1}{\mathrm{c}}
$$

In three dimension

$$
\begin{equation*}
g(v)=\frac{3 V}{2 \pi^{2}} \frac{v^{2}}{c^{3}} \tag{7}
\end{equation*}
$$

Q5. (a) Differentiate between bosons and fermions.

Solution

fermions	Boson
Anti-Symmetric wave function	Symmetric wave function
Odd atoms - Protons - electrons	Even atoms - photons
Fermi Dirac statistics	Bose-Einstein statistics

Q5 (b) Discus in details the black body radiation phenomena

Solution
The Black body radiations can be considered as the photon gas. Photons are taken as bosons and they are obey BE statistics

$$
\begin{equation*}
n_{i}=\frac{g_{i}}{e^{\varepsilon_{i} / K T}-1} \tag{1}
\end{equation*}
$$

We can write

$$
\begin{equation*}
d n=\frac{g(v) d v}{e^{h v / K T}-1} \tag{2}
\end{equation*}
$$

The translational kinetic energy for a particle in a cubical box is

$$
\begin{equation*}
\varepsilon=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \tag{3}
\end{equation*}
$$

In gama space

$$
\begin{align*}
& r^{2}=n_{x}^{2}+n_{y}^{2}+n_{z}^{2} \tag{4}\\
& r^{2}=\frac{8 m L^{2}}{h^{2}} \varepsilon \tag{5}
\end{align*}
$$

So

$$
\begin{equation*}
g d \varepsilon=\frac{2 \pi V}{h^{3}}(2 m)^{3 / 2} \varepsilon^{1 / 2} d \varepsilon \tag{6}
\end{equation*}
$$

Since the photon has no rest mass, so we can write

$$
\begin{equation*}
g d v=\frac{4 \pi V}{h^{3}} \frac{h^{2} v^{2}}{c^{2}} \frac{h}{c} d v \tag{7}
\end{equation*}
$$

The energy per unit volume, energy density, is

$$
\begin{equation*}
\rho d v=\frac{d n}{V} h v \tag{8}
\end{equation*}
$$

So

$$
\begin{equation*}
\rho d v=\frac{8 \pi h}{c^{3}} \frac{v^{3}}{e^{h v / K T}-1} d v \tag{9}
\end{equation*}
$$

Which represents Planck's radiation law

