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1. Prove the following relation for the occupation number in  due to 

Boltzmann distribution  
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------------------------------- Solution --------------------------------------------- 

Let the number of allowed states associated with the energy i  be ig . 

Let us first calculate the number of ways of putting 1n  particles of N 

particles in one box, then 2n  out of 1nN   in second, and so on until we 

have exhausted all of the particles. The number of ways of choosing 1n  

particles out of N particles is given by  
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and the number of choosing 2n  out of 1nN   is: 

!n)!nnN(
)!nN(W

221

1
2 


                                                                 (2) 

and the number of ways of achieving this arrangement is 
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To obtain the most probable distribution, we maximize Eq. (3) with 

0dN  : 
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multiply Eq. (4) by 1  and Eq. (5) bt B  and add the resulting 

equations to each other: 
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Since in  is vary independent,  
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Solving Eq. (7) for in  gives 
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2. Debye treated with crystal as a continuous elastic medium and his 

expression of VC  is a good approximation to the Duling-Petit law. 

Discuss the previous paragraph. 

-------------------------------- Solution ------------------------------------------- 

The specific heat depends on the temperature as in the figure. At high 

temperature the value of vC  is close to 3R  

 
In the Debye model, the frequency of the lattice vibration covrs a wide 

range of values. The lowest frequency in the Debye model is 0  and 

the highest allowed is D  such that the integral of  d)(g  from 0 to D  

equals 3N, see Fig. (2) 
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Thus 
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By using the equation 
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Where D  is called Debye frequency. In terms of D  the function )(g   

is obtained as 
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This summarizes the Debye theory of crystals. 

 

  

)(g  

D  



 6

 
3. Prove the following relation for the occupation number in  due to 

Bose-Einstein Statistics 
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-------------------------------- Solution --------------------------------- 

 

Let the number of allowed states associated with the energy i  be ig . 

Let us first calculate the number of ways of putting 1n  particles of N 

particles in one box, then 2n  out of 1nN   in second, and so on until we 

have exhausted all of the particles. The number of ways of choosing 1n  

particles out of N particles is given by  
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and the number of ways of achieving this arrangement is 
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To obtain the most probable distribution, we maximize Eq. (3) with 

0dN  : 
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multiply Eq. (4) by 1  and Eq. (5) bt B  and add the resulting 

equations to each other: 

 
i

iiii 0n)nlnngln(      (6) 

Since in  is vary independent,  
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Solving Eq. (7) for in  gives 
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4.  Write a short note about the vibrational spectrum of crystals.  

------------------------------------- Solution --------------------------------------- 

Let us examine the propagation of an elastic wave in a long bar. The 

wave equation in one dimension is 
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The solution of this equation is 
)tkx(iAe           (2) 

Substituting Eq. (2) in (1) leads to  
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The last equation is known as the dispersion relation which represents a 

straight line as in the figure 
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The boundary conditions require that 
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Substituting by Eq. (2) in (4) gives 
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The density of states is 
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In one dimension 
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In three dimension 
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Q5. (a) Differentiate between bosons and fermions. 

------------------------------------ Solution ---------------------------------------- 

 

fermions Boson 

Anti-Symmetric wave function Symmetric wave function 

Odd atoms - Protons - electrons Even atoms - photons 

Fermi Dirac statistics Bose-Einstein statistics 

 

 

Q5 (b) Discus in details the black body radiation phenomena 
----------------------------------- Solution ---------------------------------------- 

The Black body radiations can be considered as the photon gas. Photons 

are taken as bosons and they are obey BE statistics 
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The translational kinetic energy for a particle in a cubical box is 
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Since the photon has no rest mass, so we can write 
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The energy per unit volume, energy density, is 
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Which represents Planck's radiation law 

 

 

 

 

 

 

 

 

 


