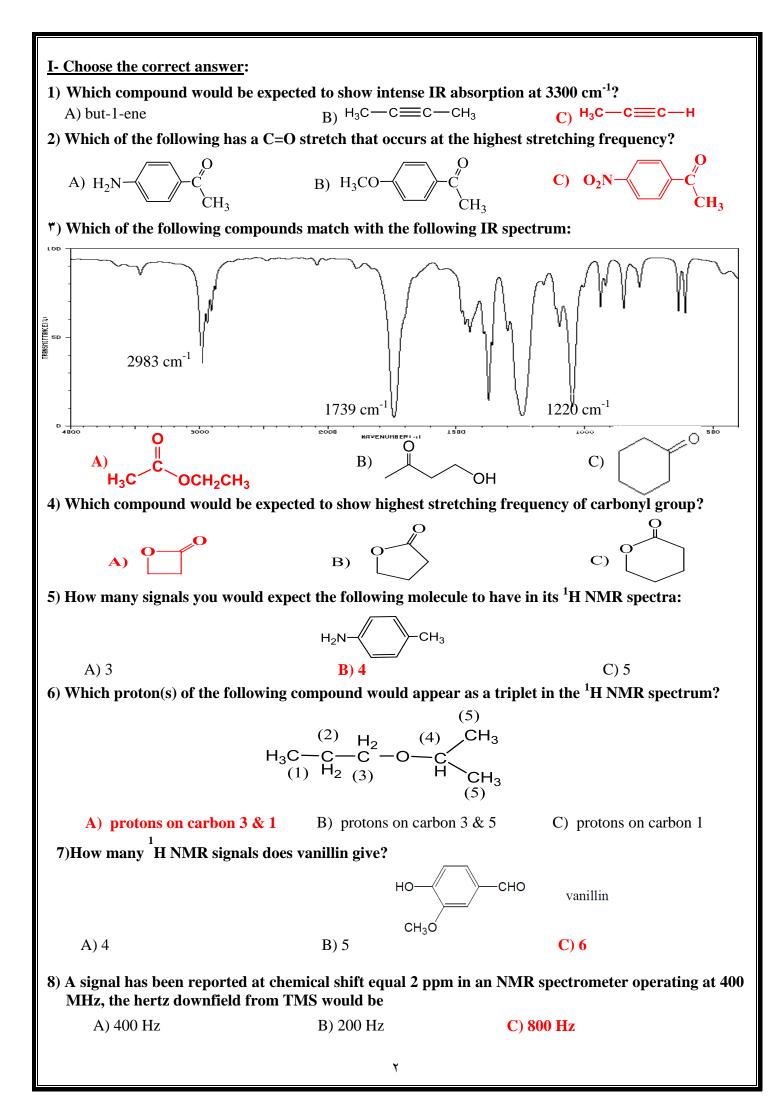
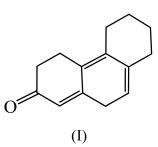
Chemistry DepartmentOrganic SpectroscopyFaculty of Science317 ChemBenha University.317 Chem

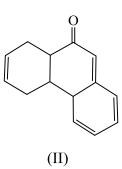

14/01/2107 Time: 2 hrs

الإجابة النموذجية لامتحان الكيمياء العضوية الطيفية

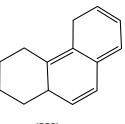
ك٣١٦ (ورقة امتحانية كاملة)

الفرقة : الثالثة الشعبة : الكيمياء و الحيوان ، الكيمياء و الحشرات، الكيمياء و الجيولوجيا، الكيمياء و النبات، الكيمياء التطبيقية و الكيمياء الاشعاعية التاريخ : السبت ١٤ / ١ / ٢٠١٧ الممتحن : د/ محمد عبد الرحمن موسى ابو ريا قسم : الكيمياء كلية : العلوم

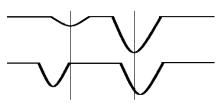



۹) Which of the following compounds exhibits the highest wave length in its UV spectrum.				
A)	B)	C)		
1 \cdot) Which compound gives M and M^{+2} peaks in the mass spectrum				
A) $C_4 H_{10} O$	B) $C_{4}H_{11}N.$	$\mathbf{C}) \mathbf{C}_{4} \mathbf{H}_{9} \mathbf{Cl}.$		
11) The mass spectrometry detects themolecules				
A) radical cation	B) cation	C) A&B		
12) An odd molecular ion peak usually indicates the presence of an number of nitrogen atoms in the molecule.				
A) even	B) odd	C) even and odd		
II- <i>a</i>) Calculate the λ_{max} for each of the following compounds:				

α , β -unsaturate ketones	215
Homoannular diene	39
Extended double bond	2 x 30
Exocyclic double bond	4 x 5
Ring residue and alkyl substituted	
β-Substituent	1 x 12
γ-Substitutent	1 x 18
δ- Substitutent	1 x 18
	0 10
higher than δ	2 x 18
higher than δ λmax (calc.)	2 x 18 418 nm
0	
0	
λmax (calc.)	418 nm
λ max (calc.) α,β-unsaturate ketones	418 nm 215
λ max (calc.) α,β -unsaturate ketones Homoannular diene	418 nm 215 39
λ max (calc.) α,β -unsaturate ketones Homoannular diene Extended double bond	418 nm 215 39 2 x 30
λ max (calc.) α,β -unsaturate ketones Homoannular diene Extended double bond Exocyclic double bond	418 nm 215 39 2 x 30


higher than δ 1 x 18 349 nm λ max (calc.)

Homo annular diene	253 nm
Extended double bond	2 x 30 nm
Exocyclic double bond	3 x 5 nm
Ring residue and alkyl substituted	5 x 5 nm
λmax (calc.)	353 nm

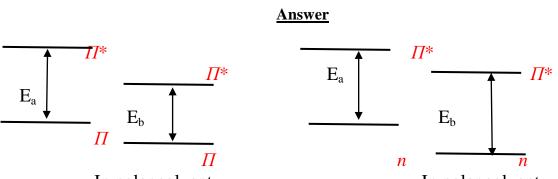

b) Define each of the following:

i- Base beak: It is the tallest peak in the mass spectrum corresponding to the most abundant ion in the spectrum 100% abundance.

ii- Overtone Bands: Overtone bands in an infrared spectrum are analogous and are multiples of the fundamental absorption frequency (2 v')

iii- Bathochromic shift: shift to longer wave length λ , also called red shift.

iv- Fermi Resonance: The Fermi resonance effect usually leads to two bands appearing close together when only one is expected. When an overtone or a combination band has the same frequency as, or a similar frequency to, a fundamental, two bands appear, split either side of the expected value and are of about equal intensity.



v- parent peak: It is a peak corresponding to the radical cation with the highest molecule weight. It is the heaviest peak in the spectrum.

vi- Auxochromes: It is a functional group of atoms with nonbonded electrons when attached to a chromophore, alters both the wavelength and intensity of absorption. If these groups are in direct conjugation with the pisystem of the chromophore, they may increase the wavelength such as hydroxyl group (-OH), the amino group (-NH₂).

III-

a) Explain the effect of polar solvents on $n \rightarrow \Pi^*$ and $\Pi \rightarrow \Pi^*$ transition.

In polar solvent

In polar solvent

The Π^* orbitals are more stabilized by polar solvents by forming hydrogen bond so the bond shifted to longer wave length (E_a>E_b) Bathochromic shift.

The *n* orbitals for unshared electrons are more stabilized by polar solvents the bond shifted to shorter wave length ($E_b > E_a$) Hypsochromic shift.

b) How can you distinguish between the following pairs of compounds (using only IR or ¹H NMR spectra)?

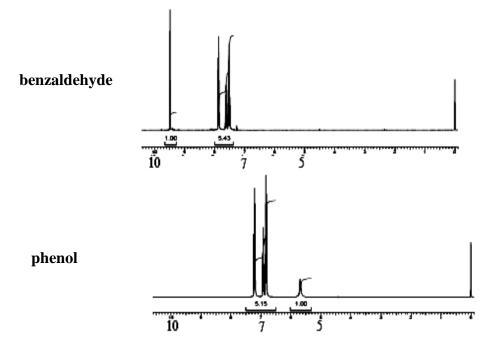
i- 1-Bromopropane and 2-bromopropane.

Answer

By using ¹H NMR spectra 1-bromopropane gives three sets of protons (triplet, 3H for $-CH_3$ group, multiplet, 2H for $-CH_2$ - group and triplet, 2H for terminal $-CH_2$ -) 2-bromopropane gives two sets of protons (douplet, 6H for two $-CH_3$ groups and septet, 1 H for -CH- group)

ii- Propionic acid & 2-propanol.

Answer


By using ¹H NMR spectra propanoic gives three sets of protons (triplet, 3H for $-CH_3$ group, quartet, 2H for $-CH_2$ - group and singlet, 1H for acidic proton higher than $\delta = 10$). 1-propanol gives four sets of protons (triplet, 3H for $-CH_3$ group, multiplet, 2H for $-CH_2$ - group, triplet, 2H for $-CH_2$ - and singlet for 1H of hydroxyl group). Or by using IR spectra propionic acid gives broad band from 2500 to 3400 cm⁻¹ for OH of acid and gives also intense beak at 1720 cm⁻¹ for carbonyl group.

iii- Toluene & methyl cyclohexane.

Answer

By using ¹H NMR spectra toluene gives a characteristic beak between chemical shift 7-8 ppm for =CH of aromatic group.

c) The two spectra below are of phenol and benzaldehyde. Assign them. (3 Marks)

The first figure shows a characteristic beak at chemical shift 9.5 ppm for -CH of aldehydic carbon atom.

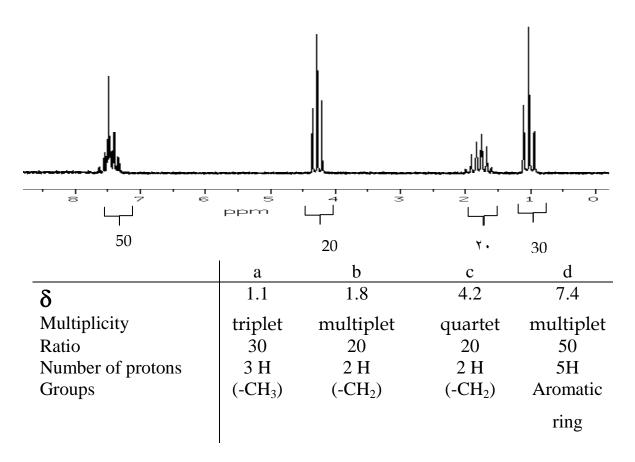
IV-

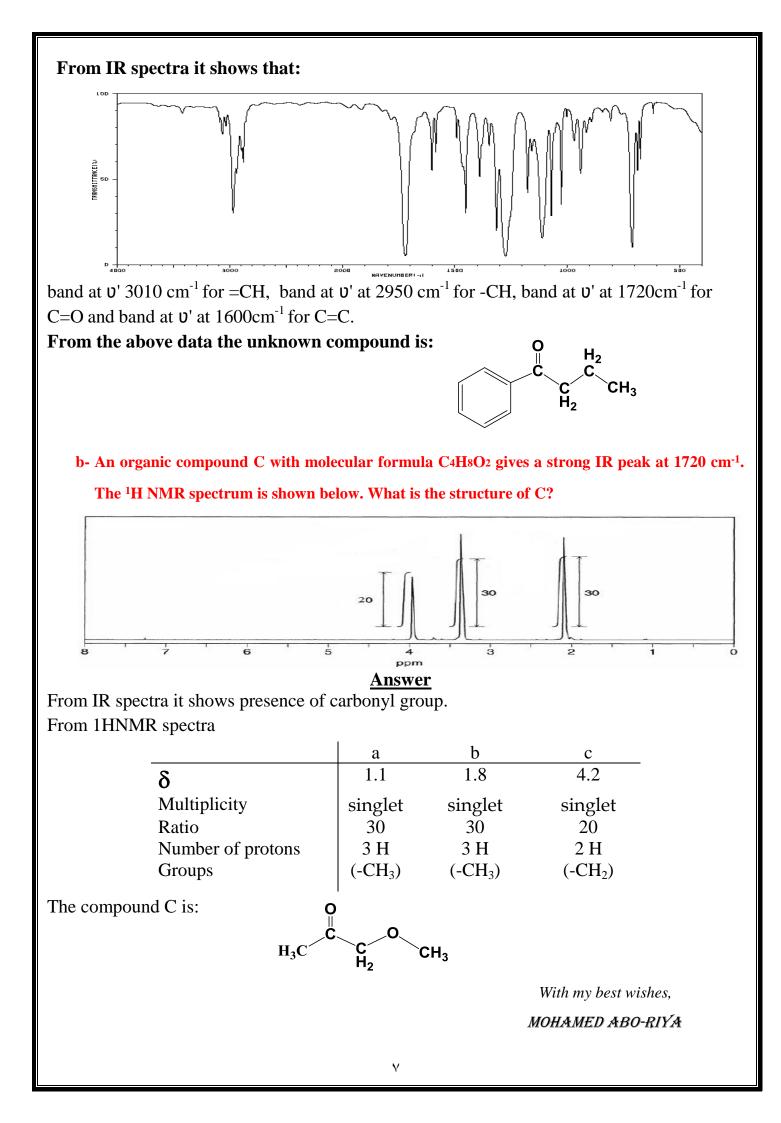
a- Identify the unknown compound that shows the following spectral data and its elemental analysis data is: C, 81.04; H, 8.16.

Answer

First we should indicate the molecular weight from the **mass spectroscopy** and elemental analysis as following :

O% = 100- (81.04 + 8.16) = 10.8 %


С	Н	0
81.04 / 12	8.16/1	10.8 /16
6.75/0.675	8.16/0.675	0.63/0.675
10	12	1


The Empirical formula is $C_{10}H_{12}O$ with Formula weight = 148 is equal to molecular formula shown in **Mass Spectra** so the empirical formula is the molecular formula.

U.N (I.H.D)= (2x10+2-12)/2 = 5

This means presence of aromatic ring and double bond

From ¹HNMR spectra

