مادة (إحصائية)
كلية العلوم
الزمن 3 ساعات
نظام ساعات معتمدة
دور يناير 2016
تاريخ الامتحان: 11 /2016/01 د./ صلاح عيد إبراهيم حمزة

1. Prove the following relation for the occupation number n_{i} due to

Boltzmann distribution $n_{i}=\sum_{i} \frac{N}{Z} e^{-\beta \varepsilon}$
Solution
Let the number of allowed states associated with the energy ε_{i} be g_{i}. Let us first calculate the number of ways of putting n_{1} particles of N particles in one box, then n_{2} out of $\mathrm{N}-\mathrm{n}_{1}$ in second, and so on until we have exhausted all of the particles. The number of ways of choosing n_{1} particles out of N particles is given by

$$
\begin{equation*}
\mathrm{W}_{1}=\frac{\mathrm{N}!}{\left(\mathrm{N}-\mathrm{n}_{1}\right)!\mathrm{n}_{1}!} \tag{1}
\end{equation*}
$$

and the number of choosing n_{2} out of $\mathrm{N}-\mathrm{n}_{1}$ is:

$$
\begin{equation*}
\mathrm{W}_{2}=\frac{\left(\mathrm{N}-\mathrm{n}_{1}\right)!}{\left(\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}\right)!\mathrm{n}_{2}!} \tag{2}
\end{equation*}
$$

and the number of ways of achieving this arrangement is

$$
\begin{align*}
& \begin{array}{l}
\mathrm{W}=\mathrm{W}_{1} \cdot \mathrm{~W}_{2} \cdots \\
= \\
=\frac{\mathrm{N}!}{\left(\mathrm{N}-\mathrm{n}_{1}\right)!\mathrm{n}_{1}!} \cdot \frac{\left(\mathrm{N}-\mathrm{n}_{1}\right)!}{\left(\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}\right)!\mathrm{n}_{2}!} \cdots \\
\\
\mathrm{n}_{1}!\mathrm{n}_{2}!\cdots \\
\mathrm{N}! \\
\begin{aligned}
\mathrm{W} & =\mathrm{N}!\prod_{\mathrm{i}} \frac{\mathrm{~g}_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}
\end{aligned} \\
\ln \mathrm{~W}=\ln \mathrm{N}!+\sum_{\mathrm{i}}\left(\mathrm{n} \ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}!\right) \\
\quad=\mathrm{N} \ln \mathrm{~N}+\sum_{\mathrm{i}}\left(\mathrm{n} \ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}\right)
\end{array}
\end{align*}
$$

To obtain the most probable distribution, we maximize Eq. (3) with $\mathrm{dN}=0:$

$$
\begin{aligned}
& \delta \ln \mathrm{W}=\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}-\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}\right) \delta \mathrm{n}_{\mathrm{i}}=0 \\
& \quad \delta \ln \mathrm{~W}=\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}-1\right) \delta \mathrm{n}_{\mathrm{i}}=0
\end{aligned}
$$

but

$$
\begin{align*}
& \delta \mathrm{N}=\sum_{\mathrm{i}} \delta \mathrm{n}_{\mathrm{i}}=0 \tag{4}\\
& \delta \mathrm{U}=\sum_{\mathrm{i}} \varepsilon_{\mathrm{i}} \delta \mathrm{n}_{\mathrm{i}}=0 \tag{5}
\end{align*}
$$

multiply Eq. (4) by $\alpha+1$ and Eq. (5) bt -B and add the resulting equations to each other:

$$
\begin{equation*}
\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}+\alpha-\beta \varepsilon_{\mathrm{i}}\right) \delta \mathrm{n}_{\mathrm{i}}=0 \tag{6}
\end{equation*}
$$

Since n_{i} is vary independent,

$$
\ln \mathrm{g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}+\alpha-\beta \varepsilon_{\mathrm{i}}=0
$$

or

$$
\begin{equation*}
\ln \frac{\mathrm{g}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}+\alpha-\beta \varepsilon_{\mathrm{i}}=0 \tag{7}
\end{equation*}
$$

Solving Eq. (7) for n_{i} gives
$\mathrm{n}_{\mathrm{i}}=\frac{\mathrm{N}}{\mathrm{Z}} \mathrm{g}_{\mathrm{i}} \mathrm{e}^{-\beta \varepsilon_{\mathrm{i}}}$

2. Find the relation between the partition function Z and thermodynamic functions \mathbf{U}, and S .

(a) Relation between Z and U

Since

$$
\mathrm{Z}=\sum_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}} \mathrm{e}^{\varepsilon_{i} / K T}
$$

differentiate Z with respect to T , holding V constant,

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Z}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} & =\sum_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}\left(\frac{\varepsilon_{\mathrm{i}}}{\mathrm{KT}^{2}}\right) \mathrm{e}^{\varepsilon_{\mathrm{i}} / \mathrm{KT}} \\
& =\frac{1}{\mathrm{KT}^{2}} \sum_{\mathrm{i}} \varepsilon_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}} \mathrm{e}^{\varepsilon_{\mathrm{i}} / \mathrm{KT}} \\
& =\frac{1}{\mathrm{KT}^{2}} \sum_{\mathrm{i}}^{\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \varepsilon_{\mathrm{i}}} \mathrm{~g}_{\mathrm{i}} \mathrm{e}^{\varepsilon_{\mathrm{i}} / \mathrm{KT}} \\
& =\frac{\mathrm{ZU}}{\mathrm{NKT}^{2}}
\end{aligned}
$$

It follow that

$$
\begin{equation*}
\mathrm{U}=\mathrm{NKT}^{2}\left(\frac{\partial \ln \mathrm{Z}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \tag{8}
\end{equation*}
$$

and U may be calculated once $\ln \mathrm{Z}$ is known as a function of T and V .

(b) Relation between Z and S

The entropy S is related to the order or distribution of the particles, through the relation:

$$
\mathrm{S}=\mathrm{K} \ln \mathrm{~W}
$$

but

$$
\ln \mathrm{W}=-\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \ln \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~g}_{\mathrm{i}}}+\mathrm{N} \ln \mathrm{~N}
$$

Hence

$$
\mathrm{S}=\mathrm{K} \ln \mathrm{~W}=\mathrm{K}\left[-\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \ln \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~g}_{\mathrm{i}}}+\mathrm{N} \ln \mathrm{~N}\right]
$$

By using the relation

$$
\mathrm{n}_{\mathrm{i}}=\frac{\mathrm{N}}{\mathrm{Z}} \mathrm{~g}_{\mathrm{i}} \mathrm{e}^{-\varepsilon_{\mathrm{i}} / \mathrm{KT}}
$$

we have

$$
\frac{n_{i}}{g_{i}}=\frac{N}{Z} e^{-\varepsilon_{i} / K T}
$$

then

$$
\begin{align*}
\mathrm{S} & =\mathrm{K} \ln \mathrm{~W}=\mathrm{K}\left[-\mathrm{N} \ln \mathrm{~N}+\mathrm{N} \ln \mathrm{Z}+\frac{\mathrm{U}}{\mathrm{KT}}+\mathrm{N} \ln \mathrm{~N}\right] \tag{9}\\
& =\mathrm{NKT} \ln \mathrm{Z}+\frac{\mathrm{U}}{\mathrm{~T}}
\end{align*}
$$

and S may be calculated once $\ln \mathrm{Z}$ is known as a function of T and V .
3. Debye treated with crystal as a continuous elastic medium and his
expression of C_{V} is a good approximation to the Duling-Petit law.

Discuss the previous paragraph.

Solution

The specific heat depends on the temperature as in the figure. At high temperature the value of C_{v} is close to 3 R

In the Debye model, the frequency of the lattice vibration covrs a wide range of values. The lowest frequency in the Debye model is $v=0$ and the highest allowed is v_{D} such that the integral of $g(v) d v$ from 0 to v_{D} equals 3 N, see Fig. (2)

Thus

$$
\int_{0}^{v_{D}} g(v) d v=3 \mathrm{~N}
$$

By using the equation
$g(v)=\frac{3 V}{2 \pi^{2} c^{3}} v^{2}$
We get

$$
\begin{aligned}
& \frac{3 \mathrm{~V}}{2 \pi^{2} \mathrm{c}^{3}} \int_{0}^{v_{\mathrm{D}}} v^{2} \mathrm{~d} v=3 \mathrm{~N} \\
& \frac{3 \mathrm{~V}}{2 \pi^{2} \mathrm{c}^{3}} \frac{v_{\mathrm{d}}^{3}}{3}=3 \mathrm{~N} \\
& v_{\mathrm{d}}^{3}=\frac{6 \pi^{2} \mathrm{Nc}^{3}}{\mathrm{~V}}
\end{aligned}
$$

Where v_{D} is called Debye frequency. In terms of v_{D} the function $g(v)$ is obtained as

$$
g(v)=\frac{9 N}{v_{D}^{3}} v^{2} \quad 0 \leq v \leq v_{D}
$$

This summarizes the Debye theory of crystals.
4. Discus in details the internal energy and specific heat for harmonic oscillator

Solution
Let us calculate U and C_{V} from the quantum partition function for monatomic crystal when lattice points free to move in one dimension only

$$
\mathrm{Z}=\frac{\mathrm{e}^{-\Theta / 2 \mathrm{~T}}}{1-\mathrm{e}^{-\Theta / \mathrm{T}}}
$$

From which

$$
\ln \mathrm{Z}=\frac{\Theta}{2 \mathrm{~T}}-\ln \left(1-\mathrm{e}^{-\Theta / \mathrm{T}}\right)
$$

So the energy U of N simple harmonic vibrators is:

$$
\begin{aligned}
\mathrm{U} & =\mathrm{NKT}^{2} \frac{\partial \ln \mathrm{Z}}{\partial \mathrm{~T}}=\mathrm{NKT}^{2} \frac{\partial}{\partial \mathrm{~T}}\left[-\frac{\Theta}{2 \mathrm{~T}}-\ln \left(1-\mathrm{e}^{-\Theta / \mathrm{T}}\right)\right] \\
& =\mathrm{NKT}^{2}\left[\frac{\Theta}{2 \mathrm{~T}^{2}}+\frac{\mathrm{e}^{-\Theta / \mathrm{T}} \frac{\Theta}{\mathrm{~T}^{2}}}{\mathrm{e}^{\Theta / \mathrm{T}}-1}\right]=\mathrm{NK} \mathrm{\Theta}\left[\frac{1}{2}+\frac{\mathrm{e}^{-\Theta / \mathrm{T}}}{1-\mathrm{e}^{-\Theta / \mathrm{T}}}\right] \\
& =\mathrm{NK} \mathrm{\Theta}\left[\frac{1}{2}+\frac{1}{\mathrm{e}^{\Theta / \mathrm{T}}-1}\right]
\end{aligned}
$$

Therefore, the average energy per vibrator is

$$
\langle\varepsilon\rangle=\frac{\mathrm{U}}{\mathrm{~N}}=\mathrm{K} \mathrm{\Theta}\left[\frac{1}{2}+\frac{1}{\mathrm{e}^{\Theta / \mathrm{T}}-1}\right]
$$

Thus for a given oscillator the internal energy is a function of temperature only. The heat capacity C_{V} is

$$
C_{V}=\left(\frac{\partial U}{\partial N}\right)_{V}=N K\left(\frac{\Theta}{T}\right)^{2}\left[\frac{e^{\Theta / T}}{e^{\Theta / T}-1}\right]^{2}
$$

The following curves are graphs of the internal energy U and of the heat capacity C_{V} divided by NK as functions of T / Θ

