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1. Prove the following relation for the occupation number in  due to 

Boltzmann distribution 
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----------------------------------- Solution --------------------------------- 

Let the number of allowed states associated with the energy i  be ig . 

Let us first calculate the number of ways of putting 1n  particles of N 

particles in one box, then 2n  out of 1nN   in second, and so on until we 

have exhausted all of the particles. The number of ways of choosing 1n  

particles out of N particles is given by  
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and the number of choosing 2n  out of 1nN   is: 

!n)!nnN(

)!nN(
W

221

1
2




                                                                 (2) 

and the number of ways of achieving this arrangement is 
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To obtain the most probable distribution, we maximize Eq. (3) with 

0dN  : 
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multiply Eq. (4) by 1  and Eq. (5) bt B  and add the resulting 

equations to each other: 
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Since in  is vary independent,  
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Solving Eq. (7) for in  gives 
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6. Find the relation between the partition function Z and 

thermodynamic functions U, and S. 

-------------------------------- Solution --------------------------------- 

(a) Relation between Z and U 

Since 
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differentiate Z with respect to T, holding V constant, 
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It follow that 
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and U may be calculated once lnZ is known as a function of T and V. 

 

(b) Relation between Z and S 

 The entropy S is related to the order or distribution of the particles, 

through the relation: 

WlnKS  
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By using the relation  
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and S may be calculated once lnZ is known as a function of T and V. 
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3. Debye treated with crystal as a continuous elastic medium and his 

expression of VC  is a good approximation to the Duling-Petit law. 

Discuss the previous paragraph. 

---------------------------------- Solution --------------------------------------- 

The specific heat depends on the temperature as in the figure. At high 

temperature the value of vC  is close to 3R  

 

In the Debye model, the frequency of the lattice vibration covrs a wide 

range of values. The lowest frequency in the Debye model is 0  and the 

highest allowed is D  such that the integral of  d)(g  from 0 to D  

equals 3N, see Fig. (2) 
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Thus 

N3d)(g
D

0




 

By using the equation 
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Where D  is called Debye frequency. In terms of D  the function )(g   is 

obtained as 
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This summarizes the Debye theory of crystals. 
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4. Discus in details the internal energy and specific heat for harmonic 

oscillator 

-------------------- Solution ----------------------------- 

Let us calculate U and VC  from the quantum partition function for 

monatomic crystal when lattice points free to move in one dimension 

only 
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So the energy U of N simple harmonic vibrators is: 
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Therefore, the average energy per vibrator is 
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Thus for a given oscillator the internal energy is a function of temperature 

only. The heat capacity VC  is 
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The following curves are graphs of the internal energy U and of the heat 

capacity VC  divided by NK as functions of /T  



 9 

 

NK

Cv 

0 1 2 3 4 

0.5 

1.0 

1.5 NK

U
 



T
 


