11/01/2106 Time: 2 hrs

الإجابة النموذجية لامتحان الكيمياء العضوية الطيفية 317 ك (نصف ورقة امتحانية)

الفرقة: الثالثة

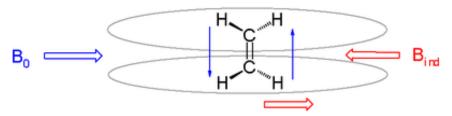
الشعبة: الكيمياء و الجيولوجيا, الكيمياء و الحيوان, الكيمياء و النبات, الكيمياء التطبيقية, الكيمياء و

الحشرات

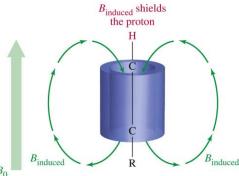
التاريخ: الاثنين 11 / 1 / 2016

الممتحن: د/ محمد عبد الرحمن موسى ابو ريا

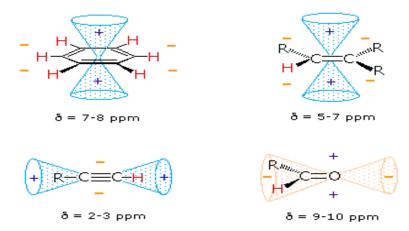
قسم: الكيمياء


كلية: العلوم

3 b) Illustrate the anisotropic effect on the chemical shift.


• Magnetic Anisotropy Effects

All groups in a molecule with π electrons will have an effect on the local magnetic field due to the induced circulation of these π electrons. (Secondary field)


(Diamagnetic field-Paramagnetic field)

For Double bond the protons in the region with applied field so it will be more deshieldeding.

For aceteylinc protons the electrons is located at shielding region.

- 3 c) A signal has been reported to occur at 600 Hz downfield from TMS in an NMR spectrometer operating at 400 MHz. (3 Marks)
 - i. What is the chemical shift of the signal?
 - ii. What would its chemical shift be in an instrument operating at 300 MHz?
 - iii.How many hertz downfield from TMS would the signal be in a 100-MHz spectrometer?

shift in Hz Chemical shift = δ =

spectrometer frequency in MHz

ppm

$$\delta$$
 = 600 Hz / 400 MHz = 1.5 ppm

- ii. The chemical shifht doesn't affected by the change in spectrometer operating frequency so it will be at 1.5 ppm.
- For a 100 MHz the frequency will be 100 * 600 / 400 = 150 Hziii. Or 1.5 ppm * 100 MHz = 150 H

4.

- **1-** b) 2
- **2-** b) 2
- **3-** c) radio
- **4-** b) 2
- **5-** a) 1
- **6-** b) ethyne, HC≡CH
- 7- b) higher
- **8-** d) a, b
- 9- a) ethyl group
- 10- b) Acetic Acid
- 11- d) 2,3-dibromobutane
- **12-** a) (CH₃)₂CHCN

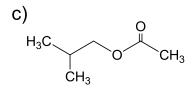
5 a) - An organic compound with the molar mass 106.5 g/mol has the composition 56.34 % C, 10.33 % H, 33.33 % Cl, has a strong IR absorption at 2970 cm $^{-1}$. Its 1 H NMR spectra shows signals at δ 1 (6H, triplet), 1.8 (4H, pentet), 3.9 (1H, pentet). What is the structure of the compound?

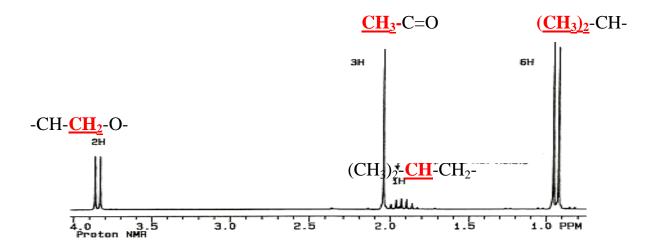
Answer

First we should indicate the molecular weight from the **mass spectroscopy** and elemental analysis as following:

$$O\% = 100 - (56.34 + 10.33 + 33.33) = 0 \%$$

	C	Н	C1	
	56.34/ 12	10.33/1	33.33/35.5	
The	4.695/0.939	10.33/0.939	0.939/0.939	Empirical formula
is C ₅ H ₁₁ Cl	5	11	1	with Formula


weight = 106.5 is equal to molecular formula so the empirical formula is the molecular formula.


From ¹HNMR spectra

From

IR spectra it shows that: there is no function groups except the Aliphatic -CH The suggested structure is

5 b. The correct structure is

