Faculty of science
Department of Mathematics

Third year

Numbers theory

The perfect answer :

(1) If a, b are integers numbers, the number m is said to be the least common multible of a, b and written $[a, b]$ if
i) $\mathrm{m}>0$
ii) a $|\mathrm{m}, \mathrm{b}| \mathrm{m}$
iii) if $\mathrm{a} \mid \mathrm{c}$ and $\mathrm{b} \mid \mathrm{c}$, then $\mathrm{m} \leq \mathrm{c}$.

Also, $[6,15,20]=30$
(2) Let $(a, b)=d$.
$\Rightarrow d \mid a$ and $d \mid b$
$\Rightarrow \mathrm{d} \mid \mathrm{aq}$ and $\mathrm{d} \mid \mathrm{b}$
$\Rightarrow \mathrm{d} \mid(\mathrm{b}-\mathrm{aq})=\mathrm{r}$
$\Rightarrow d|a, \quad d| r$
$\Rightarrow \mathrm{d} \leq(\mathrm{a}, \mathrm{r})$
$\Rightarrow \quad(\mathrm{a}, \mathrm{b}) \leq(\mathrm{a}, \mathrm{r})$
Conversely, let $(a, r)=c$

$$
\begin{align*}
& \Rightarrow \mathrm{c} \mid \mathrm{a} \text { and } \mathrm{c} \mid \mathrm{r} \\
& \Rightarrow \mathrm{c} \mid \mathrm{aq} \text { and } \mathrm{c} \mid \mathrm{r} \\
& \Rightarrow \mathrm{c} \mid \mathrm{aq}+\mathrm{r}=\mathrm{b} \\
& \Rightarrow \mathrm{c}|\mathrm{a}, \mathrm{c}| \mathrm{b} \\
& \Rightarrow \mathrm{c} \leq(\mathrm{a}, \mathrm{~b}) \\
& \Rightarrow(\mathrm{a}, \mathrm{r}) \leq(\mathrm{a}, \mathrm{~b}) \tag{2}
\end{align*}
$$

$(1),(2) \Rightarrow(a, r)=(a, b)$.
(3) Let $(a, b)=d \mid c$.
$\Rightarrow \mathrm{d}|\mathrm{a}, \mathrm{d}| \mathrm{b}$ and $\mathrm{d} \mid \mathrm{c}$
$\Rightarrow \exists \mathrm{k}, \mathrm{s}, \mathrm{t}$ such that $\mathrm{a}=\mathrm{kd}, \mathrm{b}=\mathrm{sd}$ and $\mathrm{c}=\mathrm{td}$
$\Rightarrow \mathrm{d}=\mathrm{a} / \mathrm{k}, \quad \mathrm{d}=\mathrm{b} / \mathrm{s} \quad$ and $\quad \mathrm{c}=\mathrm{td}$
$\Rightarrow d=(1 / 2 k) a+(1 / 2 \mathrm{~s}) \mathrm{b}$ and $\mathrm{c}=\mathrm{td}$
$\Rightarrow \mathrm{d}=\mathrm{ma}+\mathrm{nb}$ and $\mathrm{c}=\mathrm{td}$
$\Rightarrow \mathrm{c}=\mathrm{td}=\mathrm{tma}+\mathrm{tnb}$
By comparison with the given linear equation we have
$x=t m$ and $y=t n$ is the solution of the equation $a x+b y=c$
Conversely, let x_{0}, y_{o} is the solution of the equation $a x+b y=c$
$\Rightarrow \mathrm{ax}_{\mathrm{o}}+\mathrm{b} \mathrm{y}_{\mathrm{o}}=\mathrm{c}$
since $(a, b)=d \Rightarrow d \mid a$ and $d \mid b$

$$
\begin{aligned}
& \Rightarrow \mathrm{d} \mid \mathrm{a} \mathrm{x}_{\mathrm{o}}+\mathrm{b} \mathrm{y}_{\mathrm{o}} \\
& \Rightarrow \mathrm{~d} \mid \mathrm{c} .
\end{aligned}
$$

(4) $360=2 \times 123+114$;

$$
123=1 \times 114+9
$$

$$
114=12 \times 9+6
$$

So, the given equation has a solution

$$
\begin{aligned}
3 & =9-6 \\
& =9-114+12 \times 9 \\
& =9 \times 13-114 \\
& =13 \times(123-114) \\
& =13 \times 123-13(360-2 \times 123) \\
& =39 \times 123-13 \times 360 \\
\Rightarrow & 99=(33 \times 39) 123-(33 \times 13) 360
\end{aligned}
$$

$$
\begin{aligned}
& 9=1 \times 6+3 ; \\
& 6=2 \times 3+0 \text {. } \\
& \Rightarrow(360,123)=3 \mid 99 \text {. }
\end{aligned}
$$

$$
=1287 \times 123-429 \times 360
$$

$$
=123 x-360 y
$$

$\Rightarrow \mathrm{x}_{\mathrm{o}}=1287 \quad ; \quad \mathrm{y}_{\mathrm{o}}=-429$.
$\Rightarrow \mathrm{x}=\mathrm{x}_{\mathrm{o}}+\mathrm{kb} / \mathrm{d}=1287+120 \mathrm{k} \quad ; \quad \mathrm{y}=\mathrm{y}_{\mathrm{o}}-\mathrm{ka} / \mathrm{d}=-429-41 \mathrm{k}$.
(5) If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ and $\mathrm{c} \equiv \mathrm{e}(\bmod \mathrm{n})$, then
$\mathrm{n} \mid \mathrm{a}-\mathrm{b}$ and $\mathrm{n} \mid \mathrm{c}-\mathrm{e}$
$\Rightarrow \exists \mathrm{k}, \mathrm{s}$ such that $\mathrm{a}-\mathrm{b}=\mathrm{kn}$ and $\mathrm{c}-\mathrm{e}=\mathrm{s} \mathrm{n}$
$\Rightarrow(\mathrm{a}-\mathrm{b})-(\mathrm{c}-\mathrm{e})=(\mathrm{k}-\mathrm{s}) \mathrm{n}$
$\Rightarrow \mathrm{n} \mid(\mathrm{a}-\mathrm{b})-(\mathrm{c}-\mathrm{e})=(\mathrm{a}-\mathrm{c})-(\mathrm{b}-\mathrm{e})$
$\Rightarrow \mathrm{a}-\mathrm{c} \equiv \mathrm{b}-\mathrm{e}(\bmod \mathrm{n}) \quad$ and
$\mathrm{a} \cdot \mathrm{c}-\mathrm{b} \cdot \mathrm{e}=\mathrm{ac}+\mathrm{bc}-\mathrm{bc}-\mathrm{be}=\mathrm{c}(\mathrm{a}-\mathrm{b})+\mathrm{b}(\mathrm{c}-\mathrm{e})=\mathrm{ckn}+\mathrm{bgn}$ $=(\mathrm{ck}+\mathrm{bg}) \mathrm{n}$
$=\ln$
$\Rightarrow \mathrm{n} \mid \mathrm{ac}-\mathrm{be}$
$\Rightarrow \quad \mathrm{a} . \mathrm{c} \equiv \mathrm{b} . \mathrm{e}(\bmod \mathrm{n})$.
(6) The Euler function $\varphi(\mathrm{n})$ is numbers which are relatively prime with n .

$$
\varphi(720)=\varphi\left(2^{4} \times 3^{2} \times 5\right)=720(1-1 / 2) .(1-1 / 3) .(1-1 / 5)=192
$$

Also, let n be a prime number , so $1,2,3, \ldots, \mathrm{n}-1$ are prime with n
Thus $\varphi(\mathrm{n})=\mathrm{n}-1$.
Conversely, let $\varphi(\mathrm{n})=\mathrm{n}-1$.
if n is not prime number, there is d which devisor of n such that $1<\mathrm{d}<\mathrm{n}$ and $(\mathrm{n}, \mathrm{d})=\mathrm{d}$.
i. e . there is at least one number of $1,2, \ldots, n-$ say d- not relatively prime with n .
$\therefore \varphi(\mathrm{n}) \leq \mathrm{n}-2$. This is a contradiction, therefore n must be a prime.
(7) The functions σ, τ are not perfect multiplicative because.

$$
\begin{aligned}
& \sigma(2 \times 4)=\sigma(8)=15 \neq 3 \times 7=\sigma(2) \times \sigma(4) \\
& \tau(2 \times 4)=\tau(8)=4 \neq 2 \times 3=\tau(2) \times \tau(4)
\end{aligned}
$$

Also, $\sigma(228)=560$ and $\tau(100)=9$.
(8) The positive integers x, y, z are called primitive Phythagorean triple if

$$
x^{2}+y^{2}=z^{2} \quad \text { and }(x, y, z)=1
$$

Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are Phythagorean triple, then $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}^{2}$ and $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{d}$ Then $\left.d\right|_{x}, d|y, d|_{z}$
$\Rightarrow \exists \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$ such that $\mathrm{x}=\mathrm{x}_{1} \mathrm{~d}, \mathrm{y}=\mathrm{y}_{1} \mathrm{~d}, \mathrm{z}=\mathrm{z}_{1} \mathrm{~d}$.
Since $x^{2}+y^{2}=z^{2}$, then $x_{1}{ }^{2} d^{2}+y_{1}{ }^{2} d^{2}=z_{1}{ }^{2} d^{2}$. That is $x_{1}{ }^{2}+y_{1}{ }^{2}=z_{1}{ }^{2}$
and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=1$
Thus $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$ are primitive Phythagorean triple.
The inverse is true because if $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$ are primitive Phythagorean triple, then is
$\mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}=\mathrm{z}_{1}{ }^{2}$
By multiplicative of d^{2} we have $x_{1}{ }^{2} d^{2}+y_{1}{ }^{2} d^{2}=z_{1}{ }^{2} d^{2}$. That $x^{2}+y^{2}=z^{2}$
Hence x, y, z are Phythagorean triple
To prove that $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=1$.
Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{d}>1$
$\Rightarrow \mathrm{d} \mid \mathrm{x}_{1}$ and $\mathrm{d} \mid \mathrm{y}_{1}$
$\Rightarrow \mathrm{d} \mid \mathrm{x}_{1}{ }^{2}$ and $\mathrm{d} \mid \mathrm{y}_{1}{ }^{2}$
$\Rightarrow \mathrm{d} \mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}$
$\Rightarrow \mathrm{d} \mid \mathrm{z}_{1}{ }^{2}$
$\Rightarrow \mathrm{d} \mathrm{z}_{1}$
$(1),(2) \Rightarrow\left(x_{1}, y_{1}, z_{1}\right)>1$ which is a contradiction.

