Faculty of science

Third year

Numbers theory

Department of Mathematics

The perfect answer :

- (1) If a, b are integers numbers, the number m is said to be the least common multible of a, b and written [a, b] if
 - i) m > 0 ii) $a \mid m$, $b \mid m$ iii) if $a \mid c$ and $b \mid c$, then $m \le c$. Also, [6, 15, 20] = 30

(2) Let
$$(a, b) = d$$
.

$$\Rightarrow d | a \text{ and } d | b$$

$$\Rightarrow d | aq \text{ and } d | b$$

$$\Rightarrow d | (b - aq) = r$$

$$\Rightarrow d | a, d | r$$

$$\Rightarrow d \leq (a, r)$$

$$\Rightarrow (a, b) \leq (a, r)$$
(1)
Conversely, let $(a, r) = c$

$$\Rightarrow c | a \text{ and } c | r$$

$$\Rightarrow c | aq \text{ and } c | r$$

$$\Rightarrow c | aq + r = b$$

$$\Rightarrow c | a, c | b$$

$$\Rightarrow c \leq (a, b)$$

$$\Rightarrow (a, r) \leq (a, b)$$
(2)
(1),(2) $\Rightarrow (a, r) = (a, b)$.

(3) Let
$$(a, b) = d | c$$
.
 $\Rightarrow d | a , d | b and d | c$
 $\Rightarrow \exists k, s, t$ such that $a = k d$, $b = s d$ and $c = t d$
 $\Rightarrow d = a/k$, $d = b/s$ and $c = t d$
 $\Rightarrow d = (1/2k) a + (1/2s) b$ and $c = t d$
 $\Rightarrow d = m a + n b$ and $c = t d$
 $\Rightarrow c = t d = t m a + t n b$

By comparison with the given linear equation we have

x = t m and y = t n is the solution of the equation a x + b y = cConversely, let x_o , y_o is the solution of the equation a x + b y = c $\Rightarrow a x_o + b y_o = c$ since $(a,b)=d \Rightarrow d | a$ and d | b $\Rightarrow d | a x_o + b y_o$ $\Rightarrow d | c$.

(4)
$$360 = 2 \times 123 + 114$$
;
 $123 = 1 \times 114 + 9$;
 $114 = 12 \times 9 + 6$;
 $9 = 1 \times 6 + 3$;
 $6 = 2 \times 3 + 0$.
 $\Rightarrow (360, 123) = 3 \mid 99$.
So, the given equation has a second second

So, the given equation has a solution 3 = 9 - 6:

$$= 9 - 114 + 12 \times 9$$

= 9 × 13 - 114
= 13 × (123 - 114)
= 13 × 123 - 13 (360 - 2 × 123)
= 39 × 123 - 13 × 360
 \Rightarrow 99 = (33 × 39) 123 - (33 × 13) 360

$$= 1287 \times 123 - 429 \times 360$$

= 123 x - 360 y
$$\Rightarrow x_{o} = 1287 ; y_{o} = -429 .$$

$$\Rightarrow x = x_{o} + k b/d = 1287 + 120 k ; y = y_{o} - k a/d = -429 - 41 k .$$

(5) If
$$a \equiv b \pmod{n}$$
 and $c \equiv e \pmod{n}$, then
 $n \mid a - b$ and $n \mid c - e$
 $\Rightarrow \exists k, s \text{ such that } a - b = k n \text{ and } c - e = s n$
 $\Rightarrow (a - b) - (c - e) = (k - s) n$
 $\Rightarrow n \mid (a - b) - (c - e) = (a - c) - (b - e)$
 $\Rightarrow a - c \equiv b - e \pmod{n}$ and
 $a \cdot c - b \cdot e = a c + b c - b c - b e = c (a - b) + b (c - e) = c k n + b g n$
 $= (c k + b g) n$
 $= \ln$
 $\Rightarrow n \mid a c - b e$
 $\Rightarrow a \cdot c \equiv b \cdot e \pmod{n}$.

- (6) The Euler function φ (n) is numbers which are relatively prime with n. φ (720) = φ (2⁴ ×3² × 5) = 720 (1 - 1/2). (1 - 1/3). (1 - 1/5) = 192 Also, let n be a prime number , so 1, 2, 3 , ..., n-1 are prime with n Thus φ (n) = n - 1.
 - Conversely, let $\phi(n) = n 1$.

if n is not prime number, there is d which devisor of n such that 1 < d < n and (n, d) = d.

- i.e. there is at least one number of 1, 2, ..., n –say d- not relatively prime with n.
- $\therefore \phi(n) \le n-2$. This is a contradiction, therefore n must be a prime.

(7) The functions σ , τ are not perfect multiplicative because.

$$\sigma(2 \times 4) = \sigma(8) = 15 \neq 3 \times 7 = \sigma(2) \times \sigma(4)$$

$$\tau (2 \times 4) = \tau (8) = 4 \neq 2 \times 3 = \tau (2) \times \tau (4)$$

Also, $\sigma (228) = 560$ and $\tau (100) = 9$.

(8) The positive integers x, y, z are called primitive Phythagorean triple if $x^2 + y^2 = z^2$ and (x, y, z) = 1Let x, y, z are Phythagorean triple, then $x^2 + y^2 = z^2$ and (x, y, z) = dThen d |x|, d |y|, d |z| $\Rightarrow \exists x_1, y_1$, z_1 such that $x = x_1 d$, $y = y_1 d$, $z = z_1 d$. Since $x^2 + y^2 = z^2$, then $x_1^2 d^2 + y_1^2 d^2 = z_1^2 d^2$. That is $x_1^2 + y_1^2 = z_1^2$

and
$$(x_1, y_1, z_1) = 1$$

Thus x_1, y_1, z_1 are primitive Phythagorean triple.

The inverse is true because if x_1, y_1, z_1 are primitive Phythagorean triple, then is $x_1^2 + y_1^2 = z_1^2$

By multiplicative of d² we have $x_1^2 d^2 + y_1^2 d^2 = z_1^2 d^2$. That $x^2 + y^2 = z^2$ Hence x , y , z are Phythagorean triple

To prove that $(x_1, y_1) = 1$.

Let $(x_1, y_1) = d > 1$

$$\Rightarrow d | x_1 \text{ and } d | y_1 \quad (1)$$

$$\Rightarrow d | x_1^2 \text{ and } d | y_1^2$$

$$\Rightarrow d | x_1^2 + y_1^2$$

$$\Rightarrow d | z_1^2$$

$$\Rightarrow d | z_1 \quad (2)$$

$$(1),(2) \Rightarrow (x_1, y_1, z_1) > 1 \text{ which is a contradiction}$$