

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

 قسم الرياضيات –كمية العموم -جامعة بنهـا
)علوم حاسب(المستوي الثالث

 الاثنينوم الامتحان: ـي

 م 2015/ 1/ 5 تـاريخ الامتحان:
 رس(533()1موضوعات مختارة في علوم الحاسب) المادة :

 مصعب عبد الحميد محمد حسانالممتحن: د/

 مدرس بقسم الرياضيات بكمية العموم

 ةجابالإنموذج الاسئمة و

 كاممة ورقة

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

Answer the following questions:

marks) 12(Question 1.

A-Define balance factor, collision, multigraph,

graph invariant. (4 marks)

B-Write a function to compute the balance factor

of a given node. Show how can we compute the

balance factor of all nodes in our tree.

(8 marks)

Question 2. (14 marks)

A-Draw the binary search tree by inserting the

following sequence into an initially empty tree:

23 14 24 13 18

 Test if this tree is AVL tree or not? Suppose

we insert a new node of data 16, test that the

tree is AVL tree or not and if the tree is not

AVL tree show how can we rebalance it.

(4 marks)

B-Write a function to apply the right rotation

round node p. (4 marks)

C-Consider the following hash function:

 H(S)=H("s1s2…. sn'')=s1+p.s2+p
2
.s3 +….+p

n-1
.sn,

where p is a prime number

. Suppose we construct our hash table using

separate chaining idea, write a function to

insert a string into the hash table and write a

function to search for a string. (6 marks)

-Page 1-

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

Question 3. (10 marks)

A-Discuss Ullman algorithm for graph

isomorphism and subgraph isomorphism in

details. (7 marks)

B-Compare between adjacency list representation

and adjacency matrix representation of graphs.

(3 marks)

Question 4. (12 marks)

Using adjacency matrix representation:

 (A)Write a function to test if the given graph is

complete or not. (2 marks)

 (B)Write a function to delete a node. (2 marks)

 (C)Write a function to calculate the two

degree sequences of two graphs and check

if the two graphs are not isomorphic based

on degree sequence. (5 marks)

 (D)Write a function to check if there is a path

of length two from node i to node j.

(3 marks)

Best Wishes
Dr. Mosab Abd El-Hameed

-Page 2-

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

Question 1Answer of
A-

Balance factor of a node x is the height of the left subtree of x minus the

height of x's right subtree.

The items would hash into the same location, creating what we call

a "collision".

If there is more than one edge between any two vertices the graph is

called multigraph

A graph invariant is a function T such that if applied to two isomorphic

graphs H and G, then T(H) = T(G). In other words, if T(H) ≠ T(G) then H

is not isomorphic to G.

B-

int height(node *temp)

{

 int h = 0;

 if (temp != NULL)

 {

 int l_height = height (temp->left);

 int r_height = height (temp->right);

 int max_height = max (l_height, r_height);

 h = max_height + 1;

 }

 return h;

}

int diff(node *temp)

{

 int l_height = height (temp->left);

 int r_height = height (temp->right);

 int b_factor = l_height - r_height;

 return b_factor;

}

Note that we can compute the balance factor of all nodes in our tree by

calling the function diff in traversing tree function (inorder).

void inorder(node * root_node)

{

 if(root_node != NULL){

 inorder(root_node->left);

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

 root_node->balance_factor = diff(root_node);

 cout << "Data = " << root_node->info << ", bf = "

 << root_node->balance_factor << endl;

 inorder(root_node->right);

 }

}

2Question Answer of

A-

 23 bf =1

 bf =0 14 24 bf =0

bf =0 13 18 bf =0

The Above tree is AVL tree.

After inserting a new node of data 16, the tree is not AVL tree

 23 bf =2

 bf =-1 14 24 bf =0

bf =0 13 18 bf =1

 16 bf =0

 we can we rebalance it using left-right rotation.

First we perform a left rotation of the nodes in the left subtree of the

nearest ancestor with balance factor 2

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

 23

 18 24

 14

 13 16

Now we apply a right rotation to the tree

 18 bf = 0

 14 23 bf = -1 bf = 0

 13 16 24 bf = 0 bf = 0

 bf = 0

B-

 node* rotateright(node* p) // the right rotation round p

{
 node* q = p->left;

 p->left = q->right;

 q->right = p;

 return q;

}

C-

void insert(char *s){

 int sum = A[s[strlen(s)-1]]; //The array A map each char in the string to

number

 int p = 3;

 for(int i =1; i <strlen(s); i++)

 sum = A[s[strlen(s)-i-1]] + p*sum;

 Hash_Table[sum].AddAtBeg(s);

 }

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

void search(char *s){

 int sum = A[s[strlen(s)-1]]; //The array A map each char in the string to

number

 int p = 3;

 for(int i =1; i <strlen(s); i++)

 sum = A[s[strlen(s)-i-1]] + p*sum;

 Hash_Table[sum].Search(s); //in fun serach we must compare the two

strings are equal or not

 }

3Question Answer of
A-

Ullman algorithm is the earliest and highly-cited approach to the

(sub)graph isomorphism problem. Given two graphs G1 and G2. To check

if G1 is subgraph of G2, Ullman’s basic approach is to enumerate all

possible mappings of vertices in VG1 to those in VG2 using a depth-first

tree-search algorithm. In order to cope with subgraph isomorphism

problem efficiently, Ullman proposed a refinement procedure to prune the

search space. It is based on the following three conditions:

1. Label and degree condition.

 A vertex u ∈ VG1 can be mapped to v ∈ VG2 under injective mapping f,

i.e v = f(u), if

 (i) L G1(u) = LG2(v), and

 (ii) deg G1(u) ≤ deg G2(v).

2. One-to-One mapping of vertices condition.

 Once vertex u ∈ VG1 is mapped to v ∈ VG2, we cannot map any other

vertex in VG1 to the vertex v ∈ VG2.

3. Neighbor condition.

 By this condition Ullman algorithm examines the feasibility of mapping

u ∈ VG1 to v ∈ VG2 by considering the preservation of structural

connectivity. If there exist edges connecting u with previously explored

vertices of G1 but there are no counterpart edges in G2, the mapping test

simply fails.

Considering the graph isomorphism instead of the subgraph isomorphism,

the two graphs must have the same number of vertices and the condition 1

is modified as the following :-

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

1. Label and degree condition.

 A vertex u ∈ VG1 can be mapped to v ∈ VG2 under bijective mapping f,

i.e v = f(u), if

 (i) L G1(u) = LG2(v), and

 (ii) deg G1(u) = deg G2(v).

B-

Comparison Winner

Faster to test if (x, y) is in graph? adjacency matrices

Faster to find the degree of a

vertex?

adjacency lists

Less memory on small graphs? adjacency lists

Less memory on big graphs? adjacency matrices

Edge insertion or deletion? adjacency matrices

Faster to traverse the graph? adjacency lists

Better for most problems? adjacency lists

Table : Relative advantages of adjacency lists and matrices.

4Question Answer of

A- Bool Test_Complete(int V, int E){

 int m = V * (V - 1) / 2 ;

 if(m == E)

 return true;

 else

 return false;

 }

B-

void Delete_Node(int u, int & V1)

{

 if(V1 == 0)

 {
 cout << "Graph is empty" << endl;

 return;

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

 }

 if (u > V1 - 1)

 {
 cout << "This node is not present in the graph" << endl ;

 return;

 }

for(int i = u ; i < V1 - 1; i++)

 for(int j = 0; j < V1 ; j++)

 {
 if(i == j)

 continue;

 Adj_Matrix[j][i] = Adj_Matrix[j][i+1]; /* Shift columns left */

 Adj_Matrix[i][j] = Adj_Matrix[i+1][j]; /* Shift rows up */

 }

 V1--; /*Decrease the number of nodes in the graph */

}

C-

void Find_Degree_Sequence(int V, bool Adj_Matrix[][100], int deg[]){

 //Display the Adj_Matrix

 for(int l = 0; l < V; l++){

 int deg_vertex_l = 0;

 for(int k = 0; k < V; k++)

 if(Adj_Matrix[l][k] == 1)

 deg_vertex_l ++;

 deg[l] = deg_vertex_l;

 }

}

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

void insertion_sort(int V, int Arr[]){

 for(int j = 1; j < V; j++){

 int key = Arr[j];

 int i = j-1;

 while(i >= 0 && Arr[i] > key){

 Arr[i+1] = Arr[i];

 i = i-1;

 }
 Arr[i+1] = key;

 }
}

Void Compare_Degree_Sequence_Two_Graphs(){

//Here we get the degree sequence of the two graphs

 int deg1[V1];

 int deg2[V2];

 Find_Degree_Sequence(V1, Adj_Matrix1, deg1);

 Find_Degree_Sequence(V2, Adj_Matrix2, deg2);

 cout << "Degree Seq of the first graph: " << endl;

 cout << "-------------------------------" << endl;

 for(int i = 0 ; i < V1; i++)

 cout << "Degree of vertex " << i << " = " << deg1[i] << endl;

 cout << endl;

 cout << "Degree Seq of the second graph: " << endl;

 cout << "-------------------------------" << endl;

 for(int i = 0 ; i < V2; i++)

 cout << "Degree of vertex " << i << " = " << deg2[i] << endl;

 //Two test the two degree sequences, we must sort them in increasing

order or decreasing order

 insertion_sort(V1, deg1);

Time: Two Hours

First Semester 2014-2015

Date : 5/1/2015

Benha University

Faculty of Science

Dept. of Mathematics

Special Topics in Computer Science (1) (MC355) for Third Level Students (Computer Science)

 for(int i = 0 ; i < V1; i++)

 cout << deg1[i] << " ";

 cout << endl;

 insertion_sort(V2, deg2);

 for(int i = 0 ; i < V2; i++)

 cout << deg2[i] << " ";

 cout << endl;

 for(int i = 0 ; i < V1; i++)

 if(deg1[i] != deg2[i]){

 cout << "Two graphs are not isomorphic " << endl;

 return 0;

 }

 }

D- bool fun(int i, int j, int V){

 for(int k = 0; k < V; k++)

 if(Adj_Matrix[i][k] == 1 && Adj_Matrix[k][j] == 1)

 return true;

 return false;

 }

