Chemistry Department Faculty of Science Benha University	Organic spectroscopy 317Chem 3 rd year students	2014-2015 Time: 2 hrs		
Answer the following 1. How many sets of equiva	$\frac{1}{2}$ question: lent protons are there for CH ₂ Cl-CH	(24 Marks)		
	D. 2 C. 5	a. 6		
2. Which of the following is a. CH ₃ CH ₂ CH ₂ CH ₂ +	the most likely tragment ion forme b. $CH_3 CH_2^+$ c. $CH_3 CH_2CH_2$	d at 57? $_{2}^{+}$ d. CH ₂ =CH ⁺		
3. Which compound would a. (CH ₃) ₂ CHCN b. C	be expected to show intense IR absorbed $CH_3CH_2CO_2H$ c. CH_3CONH_2	orption at 2250 cm-1? d. (CH ₃) ₂ CHOH		
4. What kind of compound l broad band at 3300 cm ⁻¹ ?	nas a sharp IR absorption band in th	e region of 1710 cm-1 and a		
a. Ethanol b. A	Acetic Acid c. Acetone	d. Diethyl ether		
5. What is the structure for a compound, $C_4H_8Br_2$, which has the following proton NMR spectrum? Doublet δ 1.7 (6 H) and Quartet δ 4.4 (2 H) a. 1,1-dibromobutane b. 1,2-dibromobutane d. 2,3-dibromobutane				
6. How many different type	of hydrogens in 2-chloropropane			
a. 2 b. 3	c. 1	d. 4		
7. Which compound gives N a. $C_6 H_{11} Br$ b. C_2	A and M^{+2} peaks in the mass spectru $_{4}^{H}H_{11}^{N}$ c. $C_{4}^{H}H_{10}^{H}$	m ^۹ d. C ₃ H ₇ O		
8. How many IR absorptions bands do an amino group, $-NH_2$, give between 3000 cm ⁻¹ and 3500 cm ⁻¹ ?				
a.4 b. 3	c. 1	d. 2		
9. How many signals w CH ₃ OCH ₂ CH ₂ OCH ₃ ?	ould you expect to find in th	he ¹ H NMR spectrum of		
a. 2 b. 3	c. 1 d	l. 4		
10. Rank the indicated protons in the following molecule in order of increasingly downfield chemical shift?				
CH ₃ COCH ₂ CH ₃ H H H				
a. $H_c < H_b < H_a$ b. H	$c < H_a^a < H_b^a$ $c \cdot H_a < H_b < H_c^a$	d. $H_{b} < H_{a} < H_{c}$		
 11. When a high energy electron impacts molecule M in the ionization chamber, what type of species is initially produced? a. cation b. radical calcal calcal calcal calcal anion 				
12. Which one of the following compounds is expected to have the longest wavelength absorbance $(\lambda \max)^2$				
a) b)) c)	d)		

Answer two questions only:

2-*a*) Calculate the λ max for each of the following:

α , β -unsaturate ketones	215
β-Substituent	12
γ-Substitutent	18
δ- Substitutent	2 x 18
Exocyclic double bond	3 x 5
Extending double bond	30
λmax (calc.)	309

(II)

Homo annular diene	253 nm	
Ring residue	4 x 5 nm	
Exocyclic double bond	2 x 5 nm	
Extending double bond	2 x 30 nm	
	343 nm	

α ,β-unsaturate ketones	215 nm	
β-Substituent	12 nm	
δ –Substitutent or higher	18 nm	
Exocyclic double bond	5 nm	
Extending double bond	2 x 30 nm	
homo anuular	39 nm	
λmax (calc.)	349 nm	

b) How can you calculate the stretching vibrational frequency by? Illustrate the effect of its parameters on vibration frequency.

Hook's low:

$$\overline{\nu} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}} = 5.3 \times 10 \sqrt{\frac{k}{\mu}}$$

Where: v = wavenumber of the abs. peak (cm-1) $c = speed of light (3 \times 10^{10} cm/s)$ k = force constant $m = reduced mass of the atoms(m_1 \times m_2) / (m_1 + m_2)$

The frequency is affected by:

• The strength of the bond

 ν ' will increase with increasing bond strength (bond order)

• The masses of the atoms in the bond.

 $\nu^\prime\,$ will increase with decreasing mass

(III)

- 3-a) How can you distinguish between the following pairs of compounds (using spectroscopic methods)?(8 Marks)
 - 1. Benzamide & acetanilide. By using IR spectra it will show υ' at 3050 cm⁻¹ for =CH in benzamide or by using ¹HNMR it will show singlet signal at δ =1 for CH3 in actamide or at δ =7 multiplet band for benzene ring in benzamide.
 - 2. Anisol & methy-benzyl ether.

By using ¹HNMR it will show 2 sets of protons for anisol and three sets of protons for methy-benzyl ether.

3. Ethyl acetate and methyl ethyl ketone.

By using IR spectra it will show υ' at 1730cm⁻¹ for C=O in ester and υ' at 1050 cm⁻¹ for C-O for (ethyl acetate).

b) Explain the effect of polar solvents on $n + H^*$ and $\Pi + H^*$ transition. (4 Marks)

In polar solvent

The Π^* orbitals are more stabilized by polar solvents by forming hydrogen bond so the bond shifted to longer wave length ($E_a > E_b$) Bathochromic shift.

The *n* orbitals for unshared electrons are more stabilized by polar solvents the bond shifted to shorter wave length $(E_b > E_a)$ Hypsochromic shift.

Form UV spectra it show there are conjugated system.

H.I = $2 \times 10 + 2 - 14 / 2 = 4$ it means there are benzene ring.

From IR spectra it shows that:

υ' at 3010 cm⁻¹ for =CH υ' at 2950 cm⁻¹ for -CH υ' at 1600cm⁻¹ for C=C

From¹HNMR spectra it shows that:

Туре	а	b	С
δ	1.1	2.8	7.1
Multiplicity	t	q	S
Ratio	6	4	4
No. of protons	6	4	4
	2-CH ₃	2-CH ₂	~ <u> </u>

The structure is:

