Benha University Faculty of science Physics Department 1st level student First Term, Final Exam.2014-2015 Time: 2 hours Date: 29-12-2014

GENERAL PHYSICS (1) [100ph.] مادة الحررررة -الاجابات 1⁄2 ورقة - د/محمود حسنى موسى مقلد

HEAT

Answer the following questions:

Q₁) <u>Choose the right answer:</u> [24 Marks]

 The boiling point temperature of a liquid increases as: A. the volume of the liquid increases. C. the mass of the liquid decrease Ans: B. the <u>external pressure increases</u>. D. the density decrease. 							
2. Shiny surfaces have emissivi <u>Ans: A.Zero</u> .	ty (ε) close to: B. One.		C. Infinity.	D. two.			
 3. The rate of heat flow by conduction per unit area per unit temperature gradient is: A. the coefficient of linear expansion C. the coefficient of resistance. Ans: B. the coefficient of thermal conductivity D. latent heat of fusion. 							
 4. The platinum resistance thermometer depends on the thermometric property that: A. the change of density with temperature Ans:B. the increase of electrical resistance with temperature C. the increase of conductivity with temperature D. the decrease of resistance with temperature. 							
5. The quantity of heat gained b A. Volume and the change of te C. Density and specific heat.	oportional to it's: Ans: <u>B. mass and the change of temperature</u> D. all the previous.						
6. The rate of emission of radiat Ans A. $1.45 \times 10^3 \text{ W/m}^2$ B.	ion for a perfect bl 1.45x10 ² W/m ²	ack body C. 5.67	at temperature of $(\sigma = 5.67 \times 10^{-8} \text{ w})$ $\times 10^{3} \text{ W/m}^{2}$ D.	127 k is vatt/m ² .k ⁴). 5.67x10 ⁴ W/m ²			
7. At 4 °C, water has:A. maximum volumeAt 4 °C, water has:	ns:B. minimum vo	lume	C. minimum dens	ity D. nothing			
 8. The rate of heat flow by cond ans A. specific heat of the slat C. slab thickness 	uction through a sl b	ab does N B. tl D. cros	OT depend upon nermal conductivi s-sectional area o	the: ty of the slab f the slab			

9. The latent heat of fusion of water is 80 cal/g. This means 80 cal of energy are required to:

A. raise the temperature of 1 g of water by 1 K C. raise the temperature of 1 g of ice by 1 K	Σ.	B. convert 1 g of water to steam ansD. melt 1 g of ice					
10. Two different metals have the same mass a absorbed as heat by each. Their final temperat different	nd temperature ures may be d	e. Equal quanti lifferent becau	ities of ene se the samp	rgy are bles have			
A. coefficients of expansion ans: C. heat capacities	B. thermal c D. de	conductivities nsities					
11. The coefficient of linear expansion of a cert volume expansion, in $(C^{\circ})^{-1}$, is:	tain steel is 0.0	000012 per C ^o	. The coeff	ficient of 2×10^{-1}			
0.000012) <u>alis.B. 5 × 0.000012</u> 0.000012	C. 0.00	0012	D.	2 ~			
12. Possible units for the coefficient of volume e <u>Ans: A. $1/C^{\circ}$</u> B. $(C^{\circ})^{3}$	xpansion are: C. $1/(C^{\circ})^{3}$	D. :	mm ³ /C ^o				
13 . Calorie/ gm.C ⁰ are the unit of: A. Heat capacity. <u>Ans: B. Specific heat</u> .	C. Latent	heat. D. T	hermal cond	luctivity.			
14 . The "triple point" of a substance is that point such that:	for which the t	emperature an	d pressure a	ire			
A. Solid and liquid are in equilibrium Ans:C. Solid, liquid, and vapor can coexist in equ	B. l <u>iilibrium.</u>	iquid and vapo D. All the pre	or are in equi	ilibrium			
 15. The principle of Joule's method to determine the specific heat of liquids depends on A. Newton cooling law C. Stefan law A. Seebeck effect. 							
16. Heat has the same units as:A. temperatureans:B. energyC. energy	//time	D. energy/	volume				
Q₂)A) Describe briefly the principle, construction a	nd working of	a thermoelectr	ic thermome [5Marl	eter? s]			
B) Drive the formula of the rate of heat flow the the same area at the steady state?	rough a compo	und wall made	e of two ma [6Mar ł	terials of s]			

C) 50 gm of ice at 0 C is add to 200 gm of water at 30 C. What the final temperature of the mixture since the specific heat of water 4186 J/kg.c and the latent heat of fusion is 3.33×10^5 J/kg.

[5Marks]

<u>Ans ; 8.089 c</u>

Kind regards