Course Specification 100 G: General Geology

A-Affiliation

Relevant program:B.Sc. in GeologyDepartment offering the program:Department of GeologyDepartment offering the course:Department of GeologyAcademic year/level:First level

B - Basic information

Title: Physical GeologyCode:100GYear/LeveTeaching Hours:Lectures:1Tutorial:Practical: 2Total:3 h/

Year/Level: First level **Tutorial:** 0 **Total:** 3 h/week

C - **Professional** information

1 – Course Learning Objectives:

This course aims to enable the students to understand the fundamentals of Physical and Historical Geology and investigate devices and tools used in physical Geology. The student by the end of the course should be able to analyze and evaluate facts and problems in Geology, Earth evolution, and earth materials.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should be able to:

- a.1. recognize the fundamentals of geological process,
- a.2. identify the physical geology problem and ways to solve it,
- a.3. characterize each type of internal and external process,
- a.4. demonstrate the basics of the earth's crust components, geological work for water, and earthquakes and volcanoes.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. interpret the different reasons behind facts in Physical Geology,
- b2. decide which physical feature is responsible for the different geological structures,
- b3. analyze the various types of data related to surface and underground water,
- b4. investigate the distribution of earthquakes, volcanoes, and mineral resources about plate motion.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. analyze physical phenomena and Earth processes,
- c2. use the fundamentals and principles to better be understanding the features of surface water, groundwater, oceans, and seas, as well as building mountains,
- c3. draw interpretations of Earth's structure, components, and processes.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. review available literature and new state-of-the-art techniques,
- d2. self-evaluate and report preparation,
- d3. apply knoweldge and training in physical Geology problems.
- d3. work in a group and manage time and effort.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and history of the science	1	0	2
2. Earth structure	1	0	2
3. Earth Evolution	1	0	2
4. Earth materials	1	0	2
5. Rock cycle and geotectonics	1	0	2
6. Geological structures	1	0	2
7. Internal processes	1	0	2
8. Earthquakes	1	0	2
9. Volcanoes	1	0	2
10. External processes	1	0	2
11. Weathering processes	1	0	2
12. Surface water and ground water	1	0	2
13. Geologic column and geologic time scale	1	0	2
14. Geology and Man	1	0	2
Total hours	14	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
	al	recognize the fundamentals of geological process,	х	х	х	0	0	x
ge & nding	a2	identify the physical Geology problem and ways to solve,	х	х	0	х	0	0
lowled lerstar	a3	characterize each type of the internal and external processes,	х	0	х	0	х	х
Kn Unc	a4	demonstrate the basics of the earth's crust components, geological work for water, and earthquakes and volcanoes.	X	X	0	0	X	X
Int elle ctu	b1	interpret the different reasons behind facts in physical processes on Earth,	х	Х	0	0	Х	0

	b2	decide which physical feature is responsible for the different geological structures,	X	0	0	X	X	X
	b3	analyze the various types of data related to surface and underground water,	X	х	0	х	х	0
	b4	investigate the distribution of earthquakes, volcanoes, and mineral resources in relation to plate motion.	X	0	X	0	0	X
l ills	c1	analyze physical phenomena and Earth processes,	X	0	X	0	Х	х
Practical and ofessional sk	c2	use the fundamentals and principals for better understand the features of surface water, underground water, and oceans and seas, as well as building mountains,	x	0	Х	0	X	Х
I	c3	draw interpretations of Earth's structure, components, and processes.	X	0	0	0	X	X
aills	d1	review available literature and new state-of- the-art techniques,	x	x	X	0	0	х
I SI	d2	self-evaluate and report preparation,	х	х	х	0	0	х
Genera	d3	apply knowledge and training in physical Geology problems,	X	X	X	0	X	X
-	d4	work in a group and manage time and effort.	х	х	0	0	0	х

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities, and quizzes to assess the student's progress and personal attitude,
- 5.2. Assignments to assess the student's independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exams to evaluate students and promote other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a3, b1, and b2	Fifth week	6 %
Mid-Term Exam	a1, a2, b1, b2, and b3	Seventh week	8 %
Practical Exam	c1, c2, b2, and c3	Thirteenth week	24 %
Oral exam	a2, a3, a4, b2, b3, c1, c2	Thirteenth week	14 %
Final written exam	a1, a2, a3, b2, b4, c2, c3, d3.	Fourteenth week	48 %
	Total		100 %

-Course Matrix

contents	Kn	Knowledge and				Intellectual skills			Practical and				General skills			5
	un	understanding							professional skills							
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and History	Х						Х						Х			
of the Science																
Earth structure		X				X					X					Х
Earth Evolution				Х												

Earth materials			Х											
Rock cycle and				Х								Х		
geotectonics														
Geological structures					Х				х					
Internal processes		х					Х					Х		
Earthquakes			Х								Х			
Volcanoes		Х						х					Х	
External processes	Х					Х				Х		Х		
Weathering processes			Х		Х						Х			
Surface water and		Х							Х				Х	
ground water														
Oceans and Seas		Х												Х
Perspectives in Geology and related sciences			X									Х		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s) and approved by the department council, PowerPoint presentations uploaded to the university website.

6-2 Required books.

None 6-3 Recommended books

Geology: Made Simple. William H. Matthews Advisory editor Eric A. Jarman, BSc. Made Simple Books HEINEMANN: London. © 1983 by William Heinemann Ltd First edition, September 1970 Revised reprint, November 1974 Second edition, November 1977 Reprinted, March 1980 Reprinted, March 1983 Earth: An Introduction to Physical Geology, Books a la Carte Edition (11th Edition), by E. J. Tarbuck , F. K. Lutgens, , D. G. Tasa Prentice Hall; 11 edition (January 28, 2013)

6-4 Periodicals, Web sites, etc.

7- Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinators:

Prof. Emad Sallam Prof. Hassan El-Shiekh

Head of the Department:	Prof. Gamal El Qot
Date:	Approved on 9/12/2015 (meeting
	number 390), updated on
	10/1/2018 (meeting number 419),
	updated March 2023

Course Specification 101 G: General Geology

A. Affiliation

Relevant program:B.Sc. in GeologyDepartment offering the program:DepartDepartment offering the course:DepartAcademic year/level:First let

Department of Geology Department of Geology First level

B. Basic information

Title: General GeologyCode:101GYear/level: First levelTeaching Hours:Lectures:2Tutorial: 0Practical: 2Total:4 h/week

C . Professional information

1. Course Learning Objectives:

The objective of this course is to enable the students to understand the fundamentals of crystallography, minerals and rocks and to investigate techniques used in these sciences. The student by the end of the course should be able to analyze and evaluate facts and problems in minerals, crystals and Earth evolution.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should be able to:

- a1. recognize the fundamentals of Histrocial Geology,
- a2. state the cases of solid material, crystal forms and systems,
- a3. characterize each of the physical proporeties of minerals,
- a4. identify the basics of mineral classification and rock dating techniques.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** interpret the past as intrapolation of the present using fossils,
- **b2.** explain the methods of rock and material age determination,
- **b3.** describe the different crystal systems and forms,
- **b4.** examin the various types of data related to minerals and their characteristics and formation,
- **b5.** explore the different mineral categories and their origin.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- **c1.** study the different theories in Historical Geology,
- c2. identify the diffent types of fossils and casts,
- c3. apply the pricicpals for classification of crystals and minerals,
- c4. depict interpretations of physical properties for mineral identification.

d. General skills:

On successful completion of the course, the student should be able to:

- d1. review available literature on historical Geology and related branches,
- d2. combine different data for problem solving,
- d3. use knoweldge and training for identification of earth materials,
- **d4.** work in a group and collaborate with peers.

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and histroy of the science	2		2
2. Origin of the Earth	2		2
3. Principles of Hsitorical Geology	2		2
4. Methods of rock age dating and geologic time scale	2		2
5. Cases of solid material	2		2
6. Crystal systems	2		2
7. Crystal symmetry and forms	2		2
8. Example crystals and their study	2		2
9. Minerals: definition and classification	2		2
10. Physical propertires of minerals	2		2
11. Optical and cohesion properties for identification	2		2
12. Minerals of igneous origin	2		2
13. Minerals of sedimentary and metamorphic origin	2		2
14. Summary and Review	2		2
Total hours	28		28

4. Teaching and Learning methods:

]	Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
k Ig	a1.	recognize the fundamentals of HistrocialGeology,	~	\checkmark	\checkmark			\checkmark
edge & tandin	a2.	state the cases of solid material, crystal forms and systems,	~	\checkmark		\checkmark		
snowld nderst	a3.	characterize each of the physical proporeties of minerals,	~		\checkmark		~	\checkmark
U N	a4.	identify the basics of mineral classification and rock dating techniques.	\checkmark	\checkmark			\checkmark	\checkmark
llect al ills	b1.	interpret the past as interpolation of the present using fossils,	\checkmark	\checkmark			\checkmark	
Inte u Sk	b2.	explain the methods of rock and material age determination,	\checkmark			\checkmark	\checkmark	\checkmark

	b3.	describe the different crystal systems and forms,	\checkmark	\checkmark		\checkmark	~	
	b4.	examine the various types of data related to minerals and their characteristicss and formation,	~	~	\checkmark			\checkmark
	b5.	explore the different mineral categories and their origin.	\checkmark		\checkmark			\checkmark
d cills	c1.	study the different theories in Historical Geology,	\checkmark		\checkmark		\checkmark	\checkmark
al an nal sk	c2.	identify the different types of fossils and casts,	\checkmark		\checkmark		\checkmark	\checkmark
ractic fessio	c3.	apply the principals for the classification of crystals and minerals,	\checkmark	\checkmark	\checkmark			\checkmark
ord Pro	C4.	depict interpretations of physical properties for mineral identification.	\checkmark				\checkmark	\checkmark
lls	d1.	review the available literature on historical Geology and related branches,	~	~	\checkmark			~
ral Ski	d2.	combine different data for problem- solving,	\checkmark	\checkmark	\checkmark			\checkmark
Genei	d3.	use knowledge and training for the identification of earth materials,	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	d4.	work in a group and collaborate with peers.	\checkmark	\checkmark				\checkmark

5. Students' Assessment Methods and Grading:

- **51.** Discussion, class activities and quizzes to assess the student' progress and personal attitude,
- 52. Assignments to assess the student independent work,
- 53. Written mid-term exam to ensure the student progress and discover the shortage,
- 54. Final written and oral exam to evaluate students and promote other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester Work	a1,a2, a3, b1, b3 and b4	Fifth week	6 %
Mid-Term Exam	a1, a2, b1, b2, and b3	Seventh week	8 %
Practical Exam	B2, b4, c1, c2, b2, and c3	Thirteenth week	24 %
Oral exam	a2, a3, a4, b2,b3,b5, c1,c2	Thirteenth week	14 %
Final written exam	a2, a3, b2, b4, c2, c3, d3, d4.	Fourteenth week	48 %
	Total		100 %

-Course matrix

contents	Kn un	owle	dge a tandi	and ng	Inte	ellect	ual s	kills	I pro	Practio fessio	cal ar nal s	nd kills	(Genera	l skill	8
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and histroy	Х						Х						х			
Origin of the Earth		X				x					x					x
Theories in Hsitorical Geology				X												
Method of rock age dating and geologic time scale			X													
Cases of solid material				Χ										Х		
Crystal systems										х						
Crystal symmetry and forms		Х						Х						Х		
Example crystals and their study			X										X			
Minerals: definition and classification		X							Х						Х	
Physical propertires of minerals	Х											X		Х		
Optical and cohesion properties for identification			X			X							Х			
Minerals of igneous origin		X								X					Х	
Minerals of sedimentary and metamorphic origin		X														Х
Summary and Review			Х											Х		

6.List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) and approved by the department council, Power point presentations uplaced to the university website.

6.2. Required books

None

6.3. Recommended books

The Essential Guide to Crystals, Minerals and Stones By Margaret Ann Lembo Llewellyn Publications (April 8, 2013) Historical Geology by Reed Wicander &James S. Monroe Cengage Learning; 7 edition (2012) **6.4. Periodicals, Web sites, etc.**

7. Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinators:	Assistant Prof. Moustafa Mogahed
	Assistant Prof. Adel Maady
Head of the Department:	Prof. Gamal El Qot
Date:	2022/2023

Course Specification 105 G: General Geology

A. Affiliation			
Relevant program:	B.Sc. in Geology		
Department offering the	program:	Departmen	t of Geology
Department offering the	course:	Departmen	t of Geology
Academic year/level:		First level	
B . Basic information			
Title: General Geology	Code:1	05G	Year/level: First level
Teaching Hours:	Lecture	es: 1	Tutorial: 0

Practical: 2

Total:3 h/week

C . Professional information

1. Course Learning Objectives:

The objective of this course is to enable the students to understand the fundamentals and methods of Physical Geology, Histroical Geology and Minerals in different fields and to investigate techniques used in these sciences. The student by the end of the course should be able to analyze and evaluate facts and problems in minerals, crystals and Earth evolution.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should be able to:

- a1. recognize the fundamentals of Histrocial Geology,
- a2. state the cases of solid material, crystal forms and systems,
- **a3.** characterize each of the physical proporeties of minerals,
- **a4.** identify the basics of mineral classification and rock dating techniques.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** interpret the past as intrapolation of the present using fossils,
- **b2.** explain the methods of rock and material age determination,
- **b3.** describe the different crystal systems and forms,
- **b4.** examin the various types of data related to minerals and their characteristics and formation,
- **b5.** explore the different mineral categories and their origin.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. study the different theories in Historical Geology,
- **c2.** identify the diffent types of fossils and casts,
- c3. apply the pricicpals for classification of crystals and minerals,
- c4. depict interpretations of physical properties for mineral identification.

d. General skills:

On successful completion of the course, the student should be able to:

- d1. review available literature on historical Geology and related branches,
- d2. combine different data for problem solving,
- d3. use knoweldge and training for identification of earth materials,
- **d4.** work in a group and collaborate with peers.

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and histroy of the science	1		2
2. Origin of the Earth	1		2
3. Principles of Hsitorical Geology	1		2
4. Methods of rock age dating and geologic time scale	1		2
5. Cases of solid material	1		2
6. Crystal systems	1		2
7. Crystal symmetry and forms	1		2
8. Example crystals and their study	1		2
9. Minerals: definition and classification	1		2
10. Physical propertires of minerals	1		2
11. Optical and cohesion properties for identification	1		2
12. Minerals of igneous origin	1		2
13. Minerals of sedimentary and metamorphic origin	1		2
14. Summary and Review	1		2
Total hours	14		28

4. Teaching and Learning methods:

Intended Learning Outcomes				Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
200	a1.	recognize the fundamentals of Histrocial Geology,	~	\checkmark	\checkmark			\checkmark
edge & tandin	a2.	state the cases of solid material, crystal forms and systems,	\checkmark	\checkmark		~		
lowld nderst	a3.	characterize each of the physical proporeties of minerals,	\checkmark		\checkmark		~	~
n N	a4.	identify the basics of mineral classification and rock dating techniques.	\checkmark	\checkmark			\checkmark	\checkmark
llect al ills	b1.	interpret the past as intrapolation of the present using fossils,	\checkmark	\checkmark			\checkmark	
Inte u: Sk	b2.	explain the methods of rock and material age determination,	\checkmark			\checkmark	\checkmark	\checkmark

	b3.	describe the different crystal systems and forms,	\checkmark	\checkmark		\checkmark	~	
	b4.	examin the various types of data related to minerals and their characterstics and formation,	~	\checkmark	\checkmark			\checkmark
	b5.	explore the different mineral categories and their origin.	\checkmark		\checkmark			\checkmark
d cills	c1.	study the different theories in Historical Geology,	\checkmark		\checkmark		\checkmark	\checkmark
cal an nal sk	c2.	identify the diffent types of fossils and casts,	\checkmark		\checkmark		\checkmark	\checkmark
ractic fessio	c3.	apply the pricicpals for classification of crystals and minerals,	\checkmark	\checkmark	\checkmark			\checkmark
ord Pro	C4	depict interpretations of physical properties for mineral identification.	\checkmark				\checkmark	\checkmark
kills	d1.	review available literature on historical Geology and related branches,	\checkmark	~	\checkmark			~
ll Sl	d2.	combine diffenent data for problem solving,	\checkmark	\checkmark	\checkmark			\checkmark
Jenera	d3.	use knoweldge and training for identification of earth materials,	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
)	d4.	work in a group and collaborate with peers.	\checkmark	\checkmark				\checkmark

5. Students' Assessment Methods and Grading:

- **51.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 52. Assignments to assess the student independent work,
- 53. Written mid-term exam to ensure the student progress and discover the shortage,
- 54. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester Work	a1,a2, a3, b1, b3 and b4	Fifth week	6 %
Mid-Term Exam	a1, a2, b1, b2, and b3	Seventh week	8 %
Practical Exam	B2, b4, c1, c2, b2, and c3	Thirteenth week	24 %
Oral exam	a2, a3, a4, b2,b3,b5, c1,c2	Thirteenth week	14 %
Final written exam	a2, a3, b2, b4, c2, c3, d3, d4.	Fourteenth week	48 %
	Total		100 %

-Course matrix

contents	Kn un	owle derst	dge a tandi	and ng	Inte	ellect	ual s	kills	F pro	Practio fessio	cal ar nal s	nd kills	G	eneral	skills	5
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and histroy	х						Х						Х			
of the science																
Origin of the Earth		X				X					X					Х
Theories in Hsitorical				Χ												
Geology																
Method of rock age			Х													
dating and geologic time																
Cases of solid material				x										x		
Crystal systems						x				x				<u> </u>		
Crystal systems		x						x						x		
forms																
Example crystals and			Х										Х			
their study																
Minerals: definition and		Х							Х						Х	
classification																
Physical propertires of	Х						Х					Х		Х		
minerals																
Optical and cohesion			Х			Х							Х			
properties for																
identification																
Minerals of igneous		Х								Х					Х	
origin																
Minerals of sedimentary		Х														Х
and metamorphic origin																
Summary and Review			Х											Х		

6.List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) and approved by the department council, Power point presentations uplaced to the university website.

6.2. Required books

None

6.3. Recommended books

The Essential Guide to Crystals, Minerals and Stones By Margaret Ann Lembo Llewellyn Publications (April 8, 2013) Historical Geology by Reed Wicander &James S. Monroe Cengage Learning; 7 edition (2012) **6.4. Periodicals, Web sites, etc.** 7. Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinators:	Assistant Prof. Moustafa Mogahed
	Assistant Prof. Adel Maady
Head of the Department:	Prof. Gamal El Qot

Date:

2022/2023

Course Specification 100 Ch: General Chemistry (1)

A. Affiliation		
Relevant program:	B.Sc. in Geole	ogy Program
Department offering the program: Department offering the course: Academic year/level:	Department Department First level	of Geology of Chemistry
B. Basic information		
Title: General Chemistry	Code: 100 Ch	Year/Level: First level
Teaching Hours:	Lectures: 2 Practical: 0	Tutorial: 1 Total: 3 h/week

C. Professional information

1. Course Learning Objectives:

The objective of this course is to enable the students to study the atomic structures, gases laws, Chemical bondings, geometrical configuration, state of matter. Also to enable the differentiate between acidic and basic radicals.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- a1. Identify chemical formulae of inorganic and units of some parameters.
- **a2.** recognize characteristics of different states of the matter and practical elements

including trends within the periodic table and related theories.

a3. define the chemical concepts of inorganic and physical chemistry.

- **a4.** recognize theories of chemical bonding and molecular orbital diagram for diatomic molecules.
- **a5.** State the principles of thermochemistry.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

b1. Differentiate between the different states of the matter, elements and compounds based on the recognition and quantification of the properties.

b2. Solve chemical problems using computational.

b3. Analyze collected chemical data using some data processing skills.

b4. Point out different concepts in inorganic and physical chemistry.

b5. Analyze chemical data to identify the compositions and chemical structures of inorganic and organic compounds.

b6. Determine the properties of different states of matter (gases, liquids and solids).

b7. Predict the different shapes of different inorganic materials.

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

c1. Determine the chemical formulae and geometrical shapes of organic and inorganic molecules.

- **c2.** Apply the knowledge that the student studied to propose the molecular structures of the molecules.
 - C3. Investigate and identify the acidic and basic radicals.

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** Use computers and internet for information and communication technology. effectively related to uses of this instruments.
 - d2. Solve problems on the scientific basis taught in this course.
- **d3.** Work in a team effectively, manage time, collaborate and communicate with others positively.
- **d4.** Help raising public awareness of the benefits of conserving intellectual. property rights and scientific patents on the individuals and communities.

3. Contents

Tonia	Lecture	Tutorial	Practical
Торіс	hours	hours	hours
1. Introduction to General Chemistry and the Units	2	1	0
Identify chemical formulae of inorganic	2	1	0
Characteristics of different states of the matter and	2	1	
elements including trends within the periodic table and			0
related theories.			
Study the chemical bonding	2	1	0
State the principles of electrochemistry.	2	1	0
Study the molecular orbital diagram for diatomic	2	1	0
molecules.			0
Mid Term Exam.	2	1	0
Molecular structure	2	1	0
Study the state of matter	2	1	0
Thermochemistry study	2	1	0
Stoichiometric study.	2	1	0
Atomic structure	2	1	0
Hybridization	2	1	0
Revision	2	1	0
Total hours	28	14	0

4. Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Tutorial Practical	Problem solving	Brain storming
ng	a1.	Identify chemical formulae of inorganic and units of some parameters.	\checkmark		\checkmark			\checkmark
Understandi	a2.	Recognize characteristics of different states of the matter and practical elements including trends within the periodic table and related theories.	\checkmark				~	
ge &]	a3.	Define the chemical concepts of inorganic and physical chemistry.	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Knowled	a4.	Recognize theories of chemical bonding and molecular orbital diagram for diatomic molecules.	~	~	~		~	~
	a5.	State the principles of thermochemistry.	\checkmark					\checkmark
ıl Skills	b1.	Differentiate between the different states of the matter, elements and compounds. based on the recognition and quantification of the properties.	\checkmark	\checkmark	~		~	\checkmark
lectua	b2.	Solve chemical problems using computational.	~		~		~	~
Intel	b3.	Explain the bond lengths, geometries, magnetism, and color of the transition metal complexes depending on understanding of their bonding theories.	\checkmark	\checkmark	~		\checkmark	~
nd skills	c1.	Determine the chemical formulae and geometrical shapes of organic and inorganic molecules.	\checkmark		~		~	\checkmark
Practical a ofessional	c2.	Apply the knowledge that the student studied to propose the molecular structures of the molecules.	\checkmark		\checkmark		\checkmark	\checkmark
Id	C3							
kills	d1.	Use computers and internet for information and communication technology effectively related to uses of these instruments.	\checkmark					\checkmark
eral S	d2.	Solve problems on the scientific basis taught in this course.	\checkmark		\checkmark		\checkmark	\checkmark
Gen	d3.	Work in a team effectively, manage time, collaborate and communicate with others positively.	\checkmark		\checkmark			\checkmark

(d4.	Help raising public awareness of the				
		benefits of conserving intellectual	\checkmark			\checkmark
		property rights and scientific patents on the				
		individuals and communities.				

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading		
Semester Work	a1, a2, a3, b2, and d1	Fifth week	5 %		
Mid-Term Exam	a1, a2, a3, a4, b2, d1, and d2	sixth week	5 %		
Oral exam	a1, a2, a3, a4, b1, b2, b3, c1,	Thirteenth week	10 %		
	c2, and d4				
Written exam	a1, a2, a3, a4, b1, b2, b3, c1,	Fourteenth week	80 %		
	c2, d1, and d4				
Total					

6. List of references:

6.1. Course notes

Lecture notes approved by Chemistry Department.

6.2. Required books.

Peter Atkin, Loretta Jones, Leroy Laverman, Chemical Principle, Sixth Edition, W.H. Freeman, 2012.

6.3. Recommended books

1- J.D. Lee, Concise Inorganic Chemistry, 5th Edn. Blackwell Science, Australia, 1996.

2- N.N. Greenwood, A. EarnShaw, Chemistry of Elements,2nd Edn, Butterworth Heinemann, USA 1997.

6.4. Periodicals, Web sites, etc.

Journal of Chemical Education (ACS) Inorganic Chemistry (ACS) http://www.public.asu.edu/~jpbirk/CHM-115_BLB/Chpt24/ http://ocw.mit.edu/courses/chemistry/5-112-principles-of-chemical-science-fall-2005/ http://www.docbrown.info/page07/appendixtrans11.htm

7. Facilities required for teaching and learning: Using a microphone in lectures Using of slit overhead projector Using a black board Group Discussions Data show

Course coordinator:	Prof. Dr. Mohamed Hekal Prof. Dr. Mostafa Yassin Nassar Prof. Dr. Eman Abdullah Prof. Dr. Sabry Hamed Prof. Dr. Maher El-Naggar
Head of the Department:	Prof. Dr. Wagdy Eldougdoug
Date:	2022-2023

Course Specification General Mathematics (1) – 100 M

A. Affiliation					
Relevant program: B.Sc. in Geology Program					
Department offering the program:	Department of (Geology			
Department offering the course:	Mathematics Department				
Academic year/level:	First level / Firs	First level / First Semester			
Date of specifications approval:					
B. Basic information					
Title:	Code:	Year/level:			
General Mathematics (1)	100 M	First level / First Seme			

100 M Lectures: 2h/week Practical: 0 Year/level: First level / First Semester Tutorial: 2h/week Total:4 h/week

C. Professional information

Teaching Hours:

1. Course Learning Objectives:

At the end of this course, the students must be able to:

Postulate concepts and choose appropriate solutions to solve problems on scientific basis, apply mathematical knowledge and skills to the solution of real-life problems.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

At the end of this course, the students must be able to:

a1. Know Mathematical knowledge in solving different problems.

a2. Determine knowledge of the principles of mathematical modeling and applications.

a3. State and explain the meaning of complicated statements using mathematical notations and language.

a4. Deal wide background knowledge related to the different branches of Mathematics. b. Intellectual skills:

At the end of this course, the students must be able to:

b1. Apply the knowledge of the mathematical processes for modeling of real-world problems.

b2. Develop appropriate knowledge and awareness of the importance and applications of mathematical assumption.

c. Practical and professional skills:

At the end of this course, the students must be able to:

c1. Analyze the concepts and methods of mathematics to the solution of the real problems in professional practice.

c2. Examine competence in the use of mathematical methods in problem solving. c3-Investigate confidence in their abilities to use mathematics.

d. General skills:

At the end of this course, the students must be able to:

d1. Think independently and solve problems on scientific basis.

d2. Work in a team effectively; manage time, collaborate and communicate with others positively.

d3. Deal with property rights legally and ethically.

3. Contents			
Tonio	Lecture	Tutoria	Practical
Торіс	hours	l hours	hours
Mathematical induction	2	2	-
partial fractions	2	2	-
polynomials	2	2	-
Determinants	2	2	
Matrices	2	2	-
Linear systems	2	2	-
Mid Term Exam and Series	2	2	-
Taylor series	2	2	
Limits	2	2	
Continuity	2	2	-
Differentiation of Real valued functions	2	2	-
Applications on Differentiation	2	2	-
Integration	2	2	-
Finite integral	2	2	-
Total hours	28	28	-

4. Teachi	ng and	l Lea	arning methods:						
	Int	ende	ed Learning Outcomes	Lecture	Presentations & Movies	Discussions &	Tutorial	Problem solving	Brain storming
ing	a1.	Kn solv	ow Mathematical knowledge in ving different problems.	~				~	
derstand	a2.	Det prin and	ermine knowledge of the nciples of mathematical modelin l applications.	ng ✓				~	
edge & Un	a3.	Sta con ma lan	te and explain the meaning of nplicated statements using thematical notations and guage.	~				~	
Knowl	a4.	Dea rela Ma	al wide background knowledge ated to the different branches of thematics.	~				~	
ctual Is	b1.	App main of r	ply the knowledge of the thematical processes for modelin real-world problems.	ng		~			\checkmark
Intellec Skil	b2.	Dev awa app ass	velop appropriate knowledge an areness of the importance and olications of mathematical umption.	d		~			~
l and al skills	c1.	An ma rea pra	alyze the concepts and methods athematics to the solution of the al problems in professional actice.	of ✓				~	
Practica ofession	c2.	Exa ma pro	amine competence in the use of thematical methods in oblem solving.	\checkmark			~	~	
Id	c3.	Inv abi	estigate confidence in their lities to use mathematics.	~				~	
cills	d1.	Thi pro	ink independently and solve blems on scientific basis.		✓	√	✓		
neral Sk	d2.	Wo tim wit	ork in a team effectively; manage e, collaborate and communicate h others positively.	e	~	~			
Ge	d3.	Dea eth	al with property rights legally ar ically.	nd	✓	\checkmark			
5. Studen	ts' As	sessn	nent Methods and Grading:						
Tools:			To Measure	Time	schedu	ıle		Gradi	ing
Mid-Terr	n Exar	n	a1, a2	We	ek 7			10 %	6
Oral exam	1		a1, a2, c1, c2	Wee	ek 15			10 %	6
Practical exams									

Written exam	a1, a2, c1, c2, d1	Start of the sixteenth week	80 %
	Total		100 %

6. List of references:

6.1. Course notes

-Notes approved by Math. Department.

- 6.2. Required books.
 - Virgil Snyder, Elementary textbook on the calculus. New York, (1912).
- 6.3. Recommended books.
 - WWL Chen, Notes on first-year calculus, (web edition, 2008).

6.4. Periodicals, Web sites, etc.

https://cims.nyu.edu/~kiryl/Calculus/Section_5.3--Evaluating_Definite_Integrals/RSimpson-Lecture24.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.2271&rep=rep1&type=pdf http://www.maths.manchester.ac.uk/~bespalov/teaching/2E1_LA_notes_1.pdf https://people.richland.edu/james/lecture/m116/matrices/

7. Facilities required for teaching and learning: Black board and white board

Course coordinator:	Dr. Nahed A	Al-Mahdi, Dr.	Ahmeo	l Abdel	khaleq, Dr.
	Mohamed	Abdelaal,	and	Dr.	Mohamed
	Abdeljawad	l.			
Head of the Department:	Prof. Dr. Re	eda Gamal Ab	d El Ra	ahman	Khaled

Date: 2022-2023

Course Specification 100 Ph: General Physics (1)

A. Affiliation				
Relevant program: B.Sc. in Geology Program				
Department offering the program:	: Department of Geology Department of Physics			
Department offering the course:				
Academic year/level:	First level			
B. Basic information				
Title: General Physics (1)	Code: 100 Ph	Year/level: First level		
Teaching Hours:	Lectures: 2	Tutorial: 1		
-	Practical: 0	Total:3 h/week		

C. Professional information

1. Course Learning Objectives:

The objective of this course enable the student to:

Collect and recognize a lot of knowledge about the main topics of the Properties of Matterand Heat, such as the elasticity and plasticity of material, the different types of stresses and strains, moment of inertia, simple harmonic motion in addation to the different types of wave equation and interference of waves and some basics of fluid dynamics. Study Unary phase digrame of matter, types of thermometers and temprature scales, heat conduction and radiation, methods of specific heat measurments and Gas laws and thermodynamics. This will supported by some applications in each field.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

a1.Understanding the concept of matter, Heate, Simple harmonic motion, fluid dynamics, types of heat counductions and thermodynamics

a2. Describe the moment of inertia of rigid body and phase digram

a3. Recognize the different types of wave motion such as simple pindulumn, oscillating spring and , wave equation and interference of waves

a4. Memorize between the different types of stresses – strains of matter, thermometers and temperature scales .

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. Interpret the dimension theory, waves nature, heat transform and thermodynamics.
- b2. Apply some models to exam the validity of physical law.
- b3. Combine a lot of information about physical meaning of course topics.
- b4. Compare between the physical properties for different types of materials

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

- C1. Sketch the phase diagram stress- strain curve for different types of materials.
- C2. Analyze the output data from each technique.

C3. Investigate physical properties from tables and graphs.

d. General skills:

On successful completion of the course, the student should be able to:

- d1. Work in team to synthesis and studying some physical properties of some materials .
- d2. solve physical problems on scientific basis
- d3. Use computers and internet for communication

No.	Торіс	Lecture hours	Tutorial hours	Practical hours
1	Physical quantity	2	1	
2	Dimension theory	2	1	
3	Unites	2	1	
4	balance equation	2	1	
5	Types of motion	2	1	
6	Motion in different directions	2	1	
7	Mid- Term Exam & review	2	1	
8	Second newton low of motion	2	1	
9	Work and energy	2	1	
10	Introduction in heat	2	1	
11	Heat and heat transfer	2	1	
12	Kinetic theory of gases	2	1	
13	Specific heat of gases	2	1	
14	First law of thermodynamics	2	1	
	Total hours	28	14	

4. Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Tutorial	Problem solving	Brain storming
nding	a1.	Investigate and recognize the concept of matter, Heate, Simple harmonic motion, fluid dynamics, types of heat counductions and thermodynamics	\checkmark		~	~	~	
ndersta	a2.	Describe the moment of inertia of rigid body and phase digram	\checkmark			~	~	\checkmark
wledge & U	a3.	Recognize the different types of wave motion such as simple pindulumn, oscillating spring and ,wave equation and interference of waves	~		~	~	~	
Knc	a4.	Memorize between the different types of stresses – strains of matter, thermometers and temperature scales	~		~	~	~	
lls	b1.	Interpret the dimension theory, waves nature, heat transform and thermodynamics	\checkmark			\checkmark	\checkmark	
ıal Skil	b2.	Apply some models to exam the validity of physical low	\checkmark		~	\checkmark	\checkmark	✓
tellectr	b3.	Combine a lot of information about physical meaning of course topics	\checkmark			\checkmark	\checkmark	
In	b4.	Compare between the physical properties for different types of material	\checkmark			\checkmark	✓	
and al skills	c1.	Sketch the phase diagram stress- strain curve for different types of materials and	\checkmark			\checkmark	\checkmark	
actical essions	c2.	Analyze the output data from each technique	\checkmark		~	\checkmark	\checkmark	
Pr prof	c3.	Investigate physical properties from tables and graphs	\checkmark		\checkmark	\checkmark	\checkmark	
kills	d1.	Work in team to synthesis and studying some physical properties of some materials.	~			~	~	~
ral S	d2.	solve physical problems on scientific basis	\checkmark		\checkmark	\checkmark	\checkmark	
Gene	d3.	Use computers and internet for communication	~		~	~	~	~

Tools:	To Measure	Time schedule	Grading
Semester Work	a1, a2, a.4, b1, b2, b3, c.1, c.2,	Fifth week	5%
	d1, d.2 and d.3		
Mid-Term Exam	a1, a2, a5, b2, c.2, c3 and d.2,	Seventh week	5%
Oral exam	a1, a3, b4, b1, b3, c1, and d3	Fifteenth week	10%
Written exam	a1 to a4, b1 to b4, c1 to c3 and	Sixteenth week	80%
	d2		
	100 %		

5. Students' Assessment Methods and Grading:

6.List of references:

6.1. Course notes

Lecture notes approved by Physics department.

6.2. Required books.

Fundamentals of Physics Extended, 9th Edition, David Halliday, Robert Resnick, Jearl Walker (2011)

6.3. Recommended books.

1- General Physics and heat (G.A. Grant) Published by Edward Arnold, 1977 ISBN 10: <u>071312623X</u> / ISBN 13: <u>9780713126235</u>

2- General Physics, 2nd Edition by Morton M. Sternheim and Joseph W. Kane

6.4. Periodicals, Web sites, etc.

http://www. Physics2000

http://www. Physics today

7. Facilities required for teaching and learning:

Using a microphone in lectures

Using a black board

Group Discussions

Data show

Course coordinator:

Prof. Dr. Lotfy Abu-Salem

Prof. Dr. Saeed El-Sayed Abdel Ghany

Prof. Dr. Mohamed Abdel-Moneim

Head of the Department: Prof. Dr. Saeed El-Sayed Abdel Ghany

Date: 2022-2023

Course Specification 105 Ch: General Chemistry (2)

A. Affiliation					
Relevant program:	B.Sc. in Geology ProgramDepartment of GeologyDepartment of Chemistry				
Department offering the program:					
Department offering the course:					
Academic year/level:	First level				
B. Basic information					
Title: General Chemistry (2)	Code: 105 Ch	Year/level: First level			
Teaching Hours:	Lectures: 2	Tutorial: 1			
_	Practical:	Total:3 h/week			

C. Professional information

1. Course Learning Objectives:

The objective of this course is to enable the students to understand Chemical equilibrium, ionic equilibrium, solution, introduction to qualitative analysis. Introduction to organic chemistry, chemical bonding in organic chemistry, hybridization in carbon atom, nomenclature of organic compounds, reactions and physical properties of alkanes, alkenes and alkynes.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- **a1.** Recognize the general properties of solutions.
- a2. Define concepts as chemical equilibrium and ionic equilibrium.
 - **a3.** Name of different organic compounds.
 - a4. Recognize theories of chemical bonding and hybridization in carbon atom
 - **a5.** Identify physical and chemical properties of alkanes, alkenes and alkynes.

b. Intellectual skills:

- On successful completion of the course, the student should be able to.
- **b1.** Illustrate the features of solution.
- **b2.** Differentiate between different types of hybridization in carbon atom.

b3. Predict the names of different alkanes, alkenes and alkynes.

b4. Distinguish between chemical and physical properties of alkanes, alkenes and alkynes.b5. Explain chemical equilibrium and ionic equilibrium.

c. Practical and professional skills:

- On successful completion of the course, the student should be able to:
- **c1.** Apply techniques of qualitative analysis.

c3. Identify the different liquid organic compounds.

c2. Solve problems to learn the structure of organic compounds.

d. General skills:

- On successful completion of the course, the student should be able to:
- d1. Solve problems on the scientific basis taught in this course

d2. Work in a team effectively, manage time, collaborate and communicate with others positively.

d3. Help raising public awareness of the benefits of conserving intellectual property rights and scientific patents on the individuals and communities.

3. Contents

Торіс	Lecture hours	Tutoria l hours	Practica l hours
1. Chemical equilibrium.	2	1	
2. Ionic equilibrium.	2	1	
3. Solution.	2	1	
4. Introduction to qualitative analysis.	2	1	
5. Introduction to organic chemistry.	2	1	
6. Chemical bonding in organic chemistry.	2	1	
7. Mid-Term Exam (Hybridization in carbon atom sp3)	2	1	
8. Hybridization in carbon atom (sp2, sp and some	2	1	
examples)			
9. Nomenclature of organic compounds	2	1	
10.Physical and chemical properties of alkanes	2	1	
11. Physical and chemical properties of cycle alkanes	2	1	
12. Physical and chemical properties of alkenes	2	1	
13. Physical and chemical properties of alkynes	2	1	
14.Revision	2	1	
Total hours	24	14	

4 - Teaching and Learning methods:

]	Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
à	a1.	Recognize the general properties of solutions.	~		~			~
edge <i>&</i> tandir	a2.	Define concepts as chemical equilibrium and ionic equilibrium.	~					<
wlo	a3.	Name of different organic compounds.	\checkmark	\checkmark			\checkmark	
Kno Unde	a4.	Recognize theories of chemical bonding and hybridization in carbon atom	\checkmark				\checkmark	\checkmark
	a5.	Identify physical and chemical properties of alkanes, alkenes and alkynes.	\checkmark					\checkmark
ll Is al	b1.	Illustrate the features of solution.	\checkmark	\checkmark		\checkmark		\checkmark
Inte ectu Skil	b2.	Differentiate between different types of hybridization in carbon atom.	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark

	b3.	Predict the names of different alkanes, alkenes and alkynes	\checkmark	\checkmark	\checkmark	\checkmark
	b4.Distinguish between chemical and physical properties of alkanes, alkenes and alkynes.b5.Explain chemical equilibrium and ionic equilibrium.		\checkmark	\checkmark	\checkmark	~
			\checkmark		\checkmark	\checkmark
and nal	c1.	Apply techniques of qualitative analysis to identify the liquid compounds	\checkmark	\checkmark	\checkmark	\checkmark
ctical fessio skills	c2.	Identify the different liquid organic compounds.	\checkmark	\checkmark		\checkmark
Pra pro	c3.	Solve problems to learn the structure of organic compounds	\checkmark	\checkmark		\checkmark
S	d1.	Solve problems on the scientific basis taught in this course.	~			~
eral Skill	d2.	Work in a team effectively, manage time, collaborate and communicate with others positively.	\checkmark		\checkmark	\checkmark
Gen	d3.	Help raising public awareness of the benefits of conserving intellectual. property rights and scientific patents on the individuals' communities.	\checkmark	\checkmark		\checkmark

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, b2, c2, c3 and d1	Fifth week	5 %
Mid-Term Exam	a1, a2, a3, a4, a4, b1, b2, b3,	Seventh week	5 %
	c1, c2, d1, and d2		
Oral exam	a1, a2, a3, a4, a5, b1, b2, b3,	Thirteenth week	10 %
	b4, b5, c1, c2, and d3		
Written exam	a1, a2, a3, a4, a5, b1, b2, b3,	Fourteenth week	80 %
	b5, c1, c2, d1, d2 and d3		
	Total		100 %

6. List of references:

6.1. Course notes

Lecture notes approved by the Department of Chemistry.

6.2. Required books.

Koltz & Treichel, Chemistry and Chemical Reactivity 6th Ed.

6.3. Recommended books

Martin S. Silberberg Chemistry: The Molecular Nature of Matter and Change 6th Ed.

6.4. Periodicals, Web sites, etc.

Journal of Chemical Education (ACS) Analytical Chemistry (ACS) http://www.public.asu.edu/~jpbirk/CHM-115_BLB/Chpt24/ http://ocw.mit.edu/courses/chemistry/5-112-principles-of-chemical-science-fall-2005/ http://www.docbrown.info/page07/appendixtrans11.htm

7. Facilities required for teaching and learning:

Using a microphone in lectures Using a black board Group Discussions Data show

Course coordinator:	Dr. Shwekar Tawfik
	Dr. Abdelmotaal A. El-Sheikh
Head of the Department:	Prof. Dr. Wagdy Eldougdoug
Date:	2022-2023

Course Specification General Mathematics (2) – 105 M

A. Affiliation			
Relevant program:	Geology B.S	Sc. Program	
Department offering the	program:	Geology Department	
Department offering the course:		Mathematics Departm	ient
Academic year/level:		First level / Second Se	emester
Date of specifications app	proval:		
B. Basic information			
Title:		Code:	Year/level:
General Mathematics (2)		105M	First level / Second
			Semester
Teaching Hours:		Lectures: 2h/week Practical: —	Tutorial: 2h/week Total:4 h/week

C. Professional information

1. Course Learning Objectives:

At the end of this course, the students must be able to:

Postulate concepts and choose appropriate solutions to solve problems on scientific basis, apply mathematical knowledge and skills to the solution of real-life problems, complementing to course100 M.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

At the end of this course, the students must be able to:

a1. KnowMathematical knowledge in solving different problems.

a2. Determine knowledge of the principles of mathematical modeling and applications.

a3. State and explain the meaning of complicated statements using mathematical notations and language.

a4. Deal wide background knowledge related to the different branches of Mathematics. b. Intellectual skills:

At the end of this course, the students must be able to:

b1. Apply the knowledge of the mathematical processes for modeling of real-world problems.

b2. Develop appropriate knowledge and awareness of the importance and applications of mathematical assumption.

c. Practical and professional skills:

At the end of this course, the students must be able to:

c1. Analyze the concepts and methods of mathematics to the solution of the real problems in professional practice.

c2. Examine competence in the use of mathematical methods in problem solving.

d. General skills:

At the end of this course, the students must be able to:

d1. Think independently and solve problems on scientific basis.

d2. Work in a team effectively; manage time, collaborate and communicate with others positively.

d3. Deal with property rights legally and ethically.

^{3.} Contents

Tonio	Lecture	Tutoria	Practical
Торіс	hours	l hours	hours
Integration	2	2	-
Finite Integration	2	2	-
Integration Methods (1)	2	2	-
Integration Methods (2)	2	2	-
Integration Methods (3)	2	2	
Applications of Finite Integration.	2	2	-
Mid-Term Exam, Introduction in Plan geometry	2	2	-
Straight Line	2	2	-
Circle	2	2	-
Conic sections (1)	2	2	-
Conic sections (2)	2	2	-
Space geometry	2	2	-
Geometric transformations	2	2	-
Surfaces	2	2	-
Total hours	28	28	-

4. Teachi	4. Teaching and Learning methods:							
	In	tended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Tutorial	Problem solving	Brain storming
	a1.	Know Mathematical knowledge in solving different problems.	~				~	
lge & nding	a2.	Determine knowledge of the principles of mathematical modeling and applications.	~				~	
Knowled Jndersta	a3.	State and explain the meaning of complicated statements using mathematical notations and language.	~				~	
	a4.	Deal wide background knowledge related to the different branches of Mathematics.	~				~	
tual	b1.	Apply the knowledge of the mathematical processes for modeling of real-world problems.			~	~		-
Intellec Skill	b2.	Develop appropriate knowledge and awareness of the importance and applications of mathematical assumption.			~			√
al and sional Ills	c1.	Analyze the concepts and methods of mathematics to the solution of the real problems in professional practice.	~				~	
Practic profes ski	c2.	Examine competence in the use of mathematical methods in problem solving.	~			√	~	
ills	d1.	Think independently and solve problems on scientific basis.		~	\checkmark	~		
neral Sk	d2.	Work in a team effectively; manage time, collaborate and communicate with others positively.		~	~			
Ge	d3.	Deal with property rights legally and ethically.		✓	\checkmark			

5- Students' Assessment Methods and Grading:				
Tools:	To Measure	Time schedule	Grading	
Mid-Term Exam	a1, a2	Week 7	10 %	
Oral exam	a1, a4, c1, c2	Week 15	10 %	
Practical exams				

Written exam	a1, a2, c1, c2, d1	Start of the sixteenth week	80 %
	Total		100 %

6. List of references:

6.1. Course notes

-Notes approved by Math. Department.

6.2. Required books.

- Virgil Snyder, Elementary textbook on the calculus. New York, (1912).

6.3. Recommended books.

- WWL Chen, Notes on first-year calculus, (web edition, 2008).

-George R., The Elements of Plane Analytic Geometry, BiblioBazaar (2008).

6.4. Periodicals, Web sites, etc.

https://en.wikipedia.org/wiki/Conic_section http://www.stewartcalculus.com/data/ESSENTIAL%20CALCULUS%20Early%20Tra nscendentals/upfiles/ess-reviewofconics.pdf http://www.intmath.com/methods-integration/methods-integration-intro.php http://www.intmath.com/methods-integration/7-integration-by-parts.php https://en.wikipedia.org/wiki/Line_(geometry) http://www.mathsisfun.com/geometry/circle.html

7. Facilities required for teaching and learning: Black board and white board

Course coordinator:	Prof. Dr. Sayed Shahata, Prof. Dr. Abdelrahim El- Naggar, Prof. Dr. Mahmoud Abdel-Moaty, Dr. Hebba El-Sayed Fathy, Dr. Amr Soliman, and Dr. Mostafa Hassan.
Head of the Department:	Prof. Dr. Reda Gamal Abd El Rahman Khaled

Date: 2022-2023
Course Specification 105 Ph: General Physics (2)

A. Affiliation

Relevant program:	vant program:B.Sc. in Geology Program				
Department offering the program	i: Department of	of Geology			
Department offering the course:	Department of	of Physics			
Academic year/level:	First level				
B. Basic information					
Title: General Physics (2)	Code: 105 Ph	Year/level: First level			
Teaching Hours:	Lectures: 2	Tutorial: 1			
-	Practical: 0	Total 2 h/week			

C. Professional information

1. Course Learning Objectives:

By Finishing of this course the graduate will able to collect a lot of scientific information about theories of light and their applications in optical instruments. Study some of the the physical properties for mirrors and lenses . Tell about the eye and farsightedness and nearsightedness. Discover the different types of optical instruments. Understanding the electric and magnetic forces and diffrentiate among field ,potential and electromagnetic force . memorize the types of capacitores and dielectric materials . skach some of the electric circuites

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

a1. Memorise a lot of scientific information about theories of light and electromagnetic field and the applications of each other

a2. understanding magnetic and electric field nature in addition to mirror and lenses equations

a3. tell about the function of eye, electric circuits and capacitors.

b. Intellectual skills:

On successful completion of the course, the student should be able to:

b1. Interpret data from each optical or electromagnetic systems.

b2. Assess according to beam reflection what is nature of surface and wave and according to electromagnetic induction what is the nature of source.

b3. Design optical and electromagnetic system by logic way

b4. compare between the use of microscope and telescope and lenses and mirrors and application of

c. Practical and professional skills:

On successful completion of the course, the student should be able to.

c1. conduct some experiments using lenses in addition to mirrors and electric circuits.

c2. Analyze the out-pout data from optical and electromagnetic techniques.

c3. Apply the optical and electromagnetic phenomena in modern area applications.

d. General skills:

On successful completion of the course, the student should be able to.

- d1. Solve problems concerning to the course topics
- **d2.** Communicate to work efficiently in a team or separately.
- d3. Collect data and wrighting reports in the different model and fields

No.	Торіс	Lecture hours	Tutorial hours	Practical hours
1	The nature and propagation of light	2	1	
2	Reflection and refraction of spherical wave at plane and spherical surfaces		1	
3	Mirrors and Lenses	2	1	
4	the structure of the eye	2	1	
5	Cameras, microscopes and Telescopes	2	1	
6	Colom's Low	2	1	
7	Med-Term Exam& continuity of Colom's low	2	1	
8	Electrostatic field and potential	2	1	
9	Capacitors	2	1	
10	Dielectric materials	2	1	
11	Electric Current and DC Circuits	2	1	
12	Kirchhoff Law and electric circuit analysis	2	1	
13	Magnetic field and forces	2	1	
14	Electromagnetic induction	2	1	
	Total hours	28	14	

3. Contents

4. Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Tutorial	Problem solving	Brain storming
e & ling	a1.	Memorise a lot of scientific information about theories of light and electromagnetic field and the applications of each other	~		~	~	~	
Knowledg nderstand	a2.	understanding magnetic and electric field nature in addition to mirror and lenses equations	~		~	~		~
ЯD	a3.	tell about the function of eye, electric circuits and capacitors	~	~	~	~		\checkmark
	b1.	Interpret data from each optical or electromagnetic systems	~			\checkmark		
ctual Skills	b2.	Assess according to beam reflection what is nature of surface and wave, and according to Electromagnetic induction what is the nature of source	~	~		~		~
Intelle	b3.	Design optical and electromagnetic system by logic way	\checkmark			\checkmark		\checkmark
[b4.	compare between the use of microscope and telescope and lenses and mirrors and application	\checkmark	\checkmark		\checkmark		\checkmark
and mal	c1.	Conduct some experiments using lenses in addition to mirrors and electric circuits.	~		~	~		
nctical ofessic skills	c2.	Analyze the out-pout data from optical and electromagnetic techniques	\checkmark		~	\checkmark	\checkmark	
Pra	c3.	Apply the optical and electromagnetic phenomena in modern area applications	\checkmark		\checkmark	\checkmark		\checkmark
kills	d1.	Solve problems concerning to the course topics	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
neral Sl	d2.	Communicate to work efficiently in a team or separately	\checkmark			\checkmark		
Gei	d3.	Collect data and wrighting reports in the different model and fields	\checkmark			\checkmark		\checkmark

Tools	To Measure	Time schedule	Grading
Semester Work	a.1, a.2, b.1, b.2, c.1, c.2, d.1 and d.2	Fifth week	5 %
Mid-Term Exam	a.1, a.3, b.3, b.4, d.2, c.3, and d.3	Seventh week	5 %
Oral exam	a.1, a.3, b.2, b.3, b.4, c.3, and d.3	Fifteenth week	10 %
Written exam	All (ILOS)	Sixteenth week	80 %
	Total		100 %

5. Students' Assessment Methods and Grading:

6. List of references:

6.1. Course notes

Lecture notes approved by Physics department.

6.2. Required books.

Fundamentals of Physics Extended, 9th Edition, David Halliday, Robert Resnick, Jearl Walker (2011)

6.3. Recommended books.

General Physics, 2nd Edition by Morton M. Sternheim and Joseph W. Kane, John Willy and sons. Inc, (1991)

6.4. Periodicals, Web sites, etc.

http://www. Physics2000 http://www. Physics today

7. Facilities required for teaching and learning:

Using a microphone in lectures Using a black board Group Discussions Data show **Course coordinator:** Prof. Dr. Lotfy Abu-Salem Prof. Dr. Saeed El-Sayed Abdel Ghany Prof. Dr. Mohamed Abdel-Moneim Dr. Salah Eid Dr. Mahmoud Mokled Head of the Department: Prof. Dr. Saeed El-Sayed Abdel Ghany Date: 2022-2023

Course Specification 180Ch: Practical Chemistry (2)

A. Affiliation					
Relevant program: B.Sc. in	Geology Program	1			
Department offering the program:	Department of Geology				
Department offering the course:	Department of Chemistry				
Academic year/level:	first level				
B. Basic information					
Title: practical Chemistry (2)	Code: 180 Ch	Year/level: first level			
Teaching Hours:	Lectures: 0	Tutorial: 0			
5	Practical: 3	Total:3 h/week			

C. Professional information

1. Course Learning Objectives:

The objective of this course is to study the volumetric analysis (acid-base titration) and (oxidation –reduction titration). students learn the various methods to express the concentration of solution and he can prepare standard solution. They also learn the determination of unknown concentration using acid-base titration or oxidation – reduction titration. and physical properties of the unknown liquid such as color, odor and miscibility with water and identify the type of simple liquid organic compounds such as aromatic hydrocarbons and carboxylic acids and othersby general, distinction and confirmation experiments. Also, students can state the chemical composition of organic compounds.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

a1. Explain the different types of neutralization reaction in analytical chemistry.

a2. Describe the different units of concentration.

a3. know the requirement the primary standard solution.

a4. Recognize the different types of indictors in neutralization reaction.

a5. Identify physical and chemical properties of aromatic hydrocarbons " benzene, toluene".

a6. Describe physical and chemical properties of alcohols "methanol, ethanol and glycerol".a7. Explain physical and chemical properties of aldehydes and ketones "formaldehyde, acetaldehyde, benzaldehyde and acetone".

a8. Outline physical and chemical properties of carboxylic acids "formic acid, acetic acid". **a9.** State physical and chemical properties of aromatic amines "aniline".

a10. Mention general scheme for identification of simple liquid organic compounds.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

b1. Analyze collected chemical data using some data processing skills.

b2. point out different concepts of neutralization reaction in analytical chemistry.

b3. Analyze chemical data to determine the concentration of unknown.

b4. Differentiate between the different compounds based on the recognition of the properties.b5. Identify the compositions and chemical structures of organic compounds.

b6. Propose some reaction mechanisms for different chemical processes

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

c1. perform standard laboratory procedures in neutralization reaction in analytical chemistry.

c2. Assess risk in laboratory work taking into consideration the specific hazards associated with the use of chemical materials as well as the safe and proper operation of the laboratory techniques.

c3. report observations and measurements of change of color of indicator in neutralization titration to determine the concentration of unknown.

c4. Perform standard laboratory procedures in organic chemistry.

c5. Assess risk in laboratory work taking into consideration the specific hazards associated with the use of chemical materials as well as the safe and proper operation of the laboratory techniques.

c6. Examine the physical and chemical properties of compounds.

c7. Report observations and results of different chemical properties

d. General skills:

On successful completion of the course, the student should be able to:

d1. Use computers and internet for communication, data handling and word processing. **d2.** collaborate effectively with teamwork members to maintain independent and critical thinking, effective time-management and positive communication and cooperation with other members of the teamwork.

d3. effectively manage tasks, time and resources.

d4. Solve problems on the scientific basis taught in this course.

- **d5.** Work in a team effectively, manage time, collaborate and communicate with others positively.
- **d6.** Help raising public awareness of the benefits of conserving intellectual.

property rights and scientific patents on the individuals and communities

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction to neutralization reactions with			3
standardization of hydrochloric acid with sodium			
carbonate.			
2. Titration of strong acid with strong base and weak			3
acid with weak base.			
3. Titration of strong acid with weak base and weak			3
acid with strong base.			
4. Titration of mix (sodium carbonate and sodium			3
hydroxide) with hydrochloric acid			
5. Titration of mix (sodium carbonate and sodium			3
bicarbonate) with hydrochloric acid			
6. Titration of mix (hydrochloric acid and phosphoric			3
acid) with sodium hydroxide.			
7. Titration of mix (acetic acid and phosphoric acid)			3
with sodium hydroxide.			

8. Aromatic hydrocarbons	3
9. Alcohols	3
10. Aldehydes and ketones	3
11. Carboxylic acids	3
12. Aromatic amines	3
13. General scheme for identification of simple liquid organic compounds	3
14. Revision	3
Total hours	42

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
& Bu	a1.	Explain the different types of neutralization reaction in analytical chemistry.	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
edge å tandin	a2.	Describe the different units of concentration.	~	\checkmark	~	\checkmark	~	\checkmark
knowl nders	a3.	know the requirement the primary standard solution.	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
ЧD	a4.	Recognize the different types of indictors in neutralization reaction.	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
	a5.	Identify physical and chemical properties of aromatic hydrocarbons " benzene, toluene			\checkmark	\checkmark		\checkmark
	аб.	Describe physical and chemical properties of alcohols "methanol, ethanol and glycerol".			~	~		~
Kno wled	a7.	Explain physical and chemical properties of aldehydes and ketones "formaldehyde, acetaldehyde, benzaldehyde and acetone".			~	~	~	~
ge & Und	a8.	Outline physical and chemical properties of carboxylic acids "formic acid, acetic acid".			~	~	\checkmark	<
ersta ndin	ersta ndin a9. State physical and chemical properties of aromatic amines "aniline".				~	~		<
g	a10.	Mention general scheme for identification of simple liquid organic compounds.			\checkmark	\checkmark	\checkmark	\checkmark
ctual Is	b1.	Analyze collected chemical data using some data processing skills.		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Intellec Skil	b2.	point out different concepts of neutralization reaction in analytical chemistry.	~	\checkmark	~	~	~	\checkmark

	b3.	Analyze chemical data to determine the concentration of unknown	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	b4. Differentiate between the different compounds based on the recognition of the properties			\checkmark	\checkmark	\checkmark	\checkmark
	b5.	Identify the compositions and chemical structures of organic compounds.		\checkmark	\checkmark	\checkmark	\checkmark
	b6.	Propose some reaction mechanisms for different chemical processes.		\checkmark	\checkmark	\checkmark	\checkmark
	c1.	perform standard laboratory procedures in neutralization reaction in analytical chemistry.	\checkmark	\checkmark	\checkmark		\checkmark
ssional skills	c2.	Assess risk in laboratory work taking into consideration the specific hazards associated with the use of chemical materials as well as the safe and proper operation of the laboratory techniques.	~	\checkmark	V		\checkmark
profe	c3.	Perform standard laboratory procedures in organic chemistry.		\checkmark	\checkmark	~	\checkmark
ractical and	c4.	Assess risk in laboratory work taking into consideration the specific hazards associated with the use of chemical materials as well as the safe and proper operation of the laboratory techniques		\checkmark	~	~	\checkmark
	c5.	Examine the physical and chemical properties of compounds.		\checkmark	~	\checkmark	\checkmark
	сб.	Report observations and results of different chemical properties		\checkmark	\checkmark	\checkmark	\checkmark
	d1.	Use computers and internet for communication, data handling and word processing.	\checkmark	\checkmark	~		~
kills	d2.	collaborate effectively with teamwork members to maintain independent and critical thinking, effective time- management and positive communication and cooperation with other members of the teamwork.			V		~
d3.		effectively manage tasks, time and resources.			\checkmark		\checkmark
Ğ	d4.	Use computers and internet for information and communication technology. effectively			\checkmark		\checkmark
	d5.	Solve problems on the scientific basis taught in this course.		\checkmark	\checkmark	\checkmark	\checkmark
	d6.	Work in a team effectively, manage time, collaborate and communicate with others positively.		\checkmark	~		~

d7.	Help raising public awareness of the benefits of conserving intellectual property rights and scientific patents on the individuals and communities.			~		~
-----	--	--	--	---	--	---

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, b2, and d1	Fifth week	5 %
Mid-Term Exam	a1, a2, a3, a4, b2, d1, and d2	Seventh week	5 %
Oral exam	a1, a2, a3, a4, b1, b2, b3, c1, c2, and d4	Thirteenth week	10 %
Written exam	a1, a2, a3, a4, b1, b2, b3, c1, c2, d1, and d4	Fourteenth week	80 %
	Total		100 %

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s).

6.2. Required books.

J.D. Lee, Concise Inorganic Chemistry, 5th Edn. Blackwell Science, Australia, 1996.

6.3. Recommended books

1. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th Edn, John Wiley&Sons, Inc., New York, 1999.

2. N.N. Greenwood, A. EarnShaw, Chemistry of Elements,2nd Edn, Butterworth Heinemann, USA 1997.

6.4. Periodicals, Web sites, etc.

Journal of Chemical Education (ACS) Inorganic Chemistry (ACS) http://www.public.asu.edu/~jpbirk/CHM-115_BLB/Chpt24/ http://ocw.mit.edu/courses/chemistry/5-112-principles-of-chemical-science-fall-2005/ http://www.docbrown.info/page07/appendixtrans11.htm

7. Facilities required for teaching and learning:

Using a microphone in lectures Using of slit overhead projector Using a black board Group Discussions Data show

Course coordinator:	Dr. Shwekar Tawfik
	Dr. Abdelmotaal A. El-Sheikh
Head of the Department:	Prof. Dr. Wagdy Eldougdoug

Date:

2022-2023

Course Specification 180 Ph: Practical physics (1)

A. Affiliation

Relevant program:	B.Sc. in Geology Program		
Department offering the program:	Department of Geology		
Department offering the course:	Department of Physics		
Academic year/level:	First level		
B. Basic information			
Title: Practical physics (1)	Code: 180 Ph	Year/level: First level	
Teaching Hours:	Lectures: 0	Tutorial: 0	
-	Practical: 3	Total:3h/week	

C. Professional information

1. Course Learning Objectives:

By Finishing of this course the graduate will able to understand the experimental method to identify and measure some physical quantity related to the properties of material and heat. Able to verify the physical lows. How to calculate the mathematical errors and use the suitable units. Work in teem to collect data and writing an assay. knows some applications of physics in the industry

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- a1. Recognize the concept of physical Quantity and physical phenomena.
- a2. Investigate some physical lows.
- a3. tell about the physical principles and experiments

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** compare between the applications of each physical apparatus.
- **b2.** Interpret the output data from experimental systems.
- **b3.** Construct simple systems to verify the physical lows

c. Practical and professional skills:

On successful completion of the course, the student should be able to.

- **c1.** Sketch the practical data.
- c2. Use the laboratory equipment and instrument
- c3. Analyze data form each technique and tools considering scientific ethics.

d. General skills:

On successful completion of the course, the student should be able to.

d1. Solve problems and bulding experimental physical system.

- **d2.** Communicate to work efficiently in a team or separately.
- **d3.** Collect data and wrighting reports in the different physical topics.

No.	Торіс	Lecture hours	Tutorial hours	Practical hours
1.	Introduction in the units, tools, Errors and Precise measurements			3
2.	Archimedes Experiment			3
3.	Newton law of cooling			3
4.	Specific heat of solid materials			3
5.	simple pendulum			3
6	Viscosity of liquid			3
7	Mid-Term Exam			3
8.	Melting point			3
9.	surface tension			3
10.	Hook law			3
11.	velocity of sound			3
12.	Joule experiment			3
13.	Linear Expansion			3
14.	Review and summary			3
	Total hours			42

3. Contents

Intended Learning Outcomes		Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming	
ge & nding	a1.	Recognize the concept of physical Quantity and physical phenomena				\checkmark	~	
wled rstai	a2.	Investigate some physical lows		\checkmark		\checkmark		\checkmark
Knov Unde	a3.	tell about the physical principles and experiments			\checkmark	\checkmark	\checkmark	
Inte llect ual	b1.	compare between the applications of each physical apparatus		\checkmark		\checkmark		

	ing c	ma Dear ming methous.					
	b2.	Interpret the output data from experimental systems		\checkmark	\checkmark	~	\checkmark
	b3.	Construct simple systems to verify the physical lows		\checkmark	\checkmark		
d J	c1.	Sketch the practical data			\checkmark	\checkmark	
ical an ssiona cills	c2.	Use the laboratory equipment and instruments			\checkmark	\checkmark	
Practi profe sk	c3.	Analyze data form each technique and tools considering scientific ethics	\checkmark	\checkmark	\checkmark		
ills	d1.	Solve problems and bulding experimental physical system.			\checkmark	\checkmark	\checkmark
eral Sk	d2.	Communicate to work efficiently in a team or separately		\checkmark	\checkmark		
Gen	d3.	Collect data and wrighting reports in the different physical topics.	\checkmark		~	~	~

4.Teaching and Learning methods:

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester Work	a.1, a.2, a.3, b.1, b.2, c.1,	Fifth week	5%
	c.2, d.1 and d.2		
Mid-Term Exam	a.1, a.3, b.2, b.3, c.3, and	Seventh week	5%
	d.3		
Oral exam	a.2, a.3, b.2, b.3, c.3, and	Thirteenth week	10%
	d.3		
Final practical exam	All (ILOS)	Fourteenth week	80%
	100 %		

6. List of references:

6.1. Course notes

Practical notes approved by Physics department.

6.2. Required books.

The concepts and theories of modern physics by John Bernhard Stallo, BiblioBazaar (2009)

6.3. Recommended books.

Ancient and Modern Physics by Thomas E. Willson Hard Press Publishing (2010)

6.4. Periodicals, Web sites, etc.

http://www. Physics2000 http://www. Physics today

7. Facilities required for teaching and learning:

Using a microphone in lab Using a black board Group Discussions Equipment

Course coordinator: Prof. Dr. Mohamed Abdel-Moneim Dr. Asmaa Gaber

Head of the Department: Date: 2022-2023

Prof. Dr. Saeed El-Sayed Abdel Ghany

Course Specification 181 Ch: Practical chemistry (1)

A. Affiliation		
Relevant program: B.Sc. in (Geology Program	n
Department offering the program: Department offering the course: Academic year/level:	Department Department First level	of Geology of Chemistry
B. Basic information Title: Qualitative analysis for acidic and basic radicals of inorganic salts	Code:181Ch	Year/level: First level
Teaching Hours:	Lectures:0 Practical:3	Tutorial: 0 Total:3 h/week

C. Professional information

1. Course Learning Objectives:

The objective of this course is to enable the students to understandthe classification of different groups of acidic and basic radicals of inorganic salts. Also, teach students how to identify unknown inorganic salts and how to separate between mixed basic radicals.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- a1. Investigate the qualitative analytical method for identifying different unknown salts.
- **a2.** explain different classification of analytical chemistry.
- a3. Name different inorganic salts.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

b1. Interpret the given chemical data to identify the unknown inorganic salts.

b2. Differentiate between different types of acidic and basic radicals.

b3. Apply the qualitative analytical procedures to identify acidic and basic radicals of unknown salts.

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

c1. investigate the acidic and basic radicals of unknown inorganic salts.

c2. identify and distinguish between different mixed basic radicals.

d. General skills:

On successful completion of the course, the student should be able to:

d1. Use computers and internet for information and communication technology. effectively.

d2. Solve problems on the scientific basis taught in this course.

d3. Work in a team effectively, manage time, collaborate, and communicate with others positively.

d4. Help raising public awareness of the benefits of conserving intellectual. property rights and scientific patents on the individuals and communities.

3. Contents

Topic	Lecture	Tutorial	Practical
Topic	hours	hours	hours
1. Introduction to qualitative analysis and the			
classification of different groups of acidic and basic			3
radicals.			
2. Qualitative analysis for gp (I) of acidic radicals.			3
3. Qualitative analysis for gp (II) of acidic radicals.			3
4. Qualitative analysis for gp (III) of acidic radicals.			3
5. Oral exam.			3
6. Qualitative analysis for gp (I) of basic radicals.			3
7. Qualitative analysis for gp (II) of basic radicals.			3
8. Qualitative analysis for gp (III) of basic radicals.			3
9. Qualitative analysis for gp (IV) of basic radicals.			3
10. Qualitative analysis for gp (V) of basic radicals.			3
11. Qualitative analysis for gp (VI) of basic radicals.			3
12.Revision1			3
13.Revision2			3
14.Revision3			3
Total hours			42

4 - Teaching and Learning methods:

Intended Learning Outcomes		Lecture	Presentations & Movies	Discussions & Seminars	Problem solving	Brain storming	
edge & tandin	a1.	Investigate the qualitative analytical method for identifying different unknown salts.	\checkmark		\checkmark		\checkmark
snowld Jnders	a2.	explain different classification of analytical chemistry.	\checkmark				
L H	a3.	Name different inorganic salts.	\checkmark		\checkmark	\checkmark	\checkmark
Int ell	b1.	Interpret the given chemical data to identify the unknown inorganic salts.	\checkmark		\checkmark	\checkmark	\checkmark

	b2.	Differentiate between different types of acidic and basic radicals.	\checkmark	~	\checkmark	\checkmark
	b3.	Apply the qualitative analytical procedures to identify acidic and basic radicals of unknown salts.	\checkmark	\checkmark	\checkmark	\checkmark
ctica nd fessi	c1.	Investigate the acidic and basic radicals of unknown inorganic salts.	\checkmark	\checkmark	\checkmark	\checkmark
Prac l a prof	c2.	Identify and distinguish between different mixed basic radicals.	\checkmark	\checkmark	\checkmark	\checkmark
	d1.	Use computers and internet for information and communication technology effectively.	\checkmark			\checkmark
ills	d2.	Solve problems on the scientific basis taught in this course.	\checkmark	\checkmark	\checkmark	\checkmark
neral Sk	d3.	Work in a team effectively, manage time, collaborate and communicate with others positively.	\checkmark	\checkmark		\checkmark
9Đ	d4.	Help raising public awareness of the benefits of conserving intellectual property rights and scientific patents on the individuals and communities.	\checkmark			\checkmark

5- Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, b2, d1 and d3	Fifth week	10 %
Oral exam	a1, a2, a3, b2, d1, and d2	Seventh week	10%
Practical exam	a1, a2, a3, b1, b2, b3, c1, c2,	Thirteenth week	80 %
	and d4		
Written exam	a1, a2, a3, a4, a5, b1, b2, b3,	Fourteenth week	80 %
	c1, c2, d1, and d4		
	100 %		

6. List of references:

6.1. Course notes

Lecture note approved by Department of Chemistry.

6.2. Required books.

Zumdahl, S. S. *Chemical Principles*, 4th Ed.; Houghton-Mifflin: New York, 2002, chapter 8.

6.3. Recommended books

1-Wismer, Robert K. *Qualitative Analysis with Ionic Equilibrium*; Macmillan Publishing Company: New York, 1991.

6.4. Periodicals, Web sites, etc.

Journal of *Chemical Education* (ACS) Inorganic Chemistry (ACS)

http://www.public.asu.edu/~jpbirk/CHM-115_BLB/Chpt24/ http://ocw.mit.edu/courses/chemistry/5-112-principles-of-chemical-science-fall-2005/ http://www.docbrown.info/page07/appendixtrans11.htm

7. Facilities required for teaching and learning:

Using a microphone in lectures Using of slit overhead projector Using a black board Group Discussions Data show

Course coordinator:	Prof. Dr. Mohamed Hekal
	Prof. Dr. Mostafa Yassin Nassar
	Prof. Dr. Eman Abdullah
	Prof. Dr. Sabry Hamed
	Prof. Dr. Maher El-Naggar
Head of the Department:	Prof. Dr. Wagdy Eldougdoug
Date:	2022-2023

Course Specification 181 Ph: Practical physics (2)

A. Affiliation			
Relevant program:	B.Sc. in Geology Program		
Department offering the program:	Department of Geology		
Department offering the course:	Department of Physics		
Academic year/level:	First level		
B. Basic information			
Title: Practical physics (2)	Code: 181 Ph	Year/level: First level	
Teaching Hours:	Lectures: 0 Practical: 3	Tutorial: 0 Total:3h/week	
	Practical: 3	Total:3h/week	

C. Professional information

1. Course Learning Objectives:

By Finishing of this course the graduate will able to

Understand the experimental method to identify and measure some physical quantity related to the electricity-magnetism and optics. Able to verify the physical lows. How to calculate the mathematical errors and use the suitable units. Work in teem to collect data and writing an assay. knows some applications of physics in the industry

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- **a1.** Recognize the concept of physical Quantity and physical phenomena.
- a2. memorize some physical laws.

a3. tell about the physical principles and experiments.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** Compare between the applications of each physical apparatus.
- **b2.** Analyze the output data from experimental systems.
- **b3**. Construct simple systems to verify the physical low

c. Practical and professional skills:

On successful completion of the course, the student should be able to.

- c1. Sketch the practical data.
- c2. Identify the measuring method and system
- c3. Apply techniques and tools considering scientific ethics.

d. General skills:

On successful completion of the course, the student should be able to.

- **d1.** Solve problems and bulding experimental physical system.
- **d2.** Communicate to work efficiently in a team or separately.
- d3. Collect data and wrighting reports in the different physical topics.

No.	Торіс	Lecture hours	Tutorial hours	Practical hours
1.	Introduction in the units, tools, Errors and Precise measurements			3
2.	Ohm's Law			3
3.	The Metric Bridge			3
4.	The tangent galvanometer			3
5.	Meld's experiment			3
6	Comparison of magnetic moment			3
7	Mid-Term Exam			3
8.	Concave Mirror			3
9.	Convex Lens			3
10.	Concave Mirror			3
11.	Convex Lens			3
12.	Newton's formula of the lenses			3
13.	Verification of Kirchhoff's law			3
14.	Review and summary			3
	Total hours			42

3. Contents

	J	Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
ge & 1ding	a1.	Recognize the concept of physical Quantity and physical phenomena				\checkmark	\checkmark	
wled rstaı	a2.	memorize some physical lows				\checkmark		\checkmark
Kno ^v Unde	a3.	tell about the physical principles and experiments			\checkmark	~	\checkmark	

4. Teaching and Learning methods:

Skills	b1.	Compare between the applications of each physical apparatus			\checkmark		
ectual S	b2.	Analyze the output data from experimental systems		~	\checkmark	\checkmark	\checkmark
Intell	b3.	Construct simple systems to verify the physical lows			\checkmark		
al on	c1.	Sketch the practical data			\checkmark	\checkmark	
ctic nd essi	c.2	Identify the measuring method and system		\checkmark	\checkmark	\checkmark	
Pra a brof	c.3	Apply techniques and tools considering scientific ethics		\checkmark	\checkmark		
kills	d.1	Solve problems and bulding experimental physical system.			\checkmark	\checkmark	~
neral S	d.2	Communicate to work efficiently in a team or separately		\checkmark	\checkmark		
Ge	d.3	Collect data and wrighting reports in the different physical topics		~	\checkmark	\checkmark	~

5. Students' Assessment Methods and Grading:

Tools:	To Measure	Time schedule	Grading
Semester Work	a.1, a.2, a.3, b.1, b.2, c.1,	Fifth week	5%
	c.2, d.1 and d.2		
Mid-Term Exam	a.1, a.3, b.2, b.3, d.2, c.3	Seventh week	5%
	and d.3		
Oral exam	a.2, a.3, b.2, b.3, c.3 and	Thirteenth week	10%
	d.3		
Final practical exam	All (ILOS)	Fourteenth week	80%
	Total		100 %

6. List of references:

6.1. Course notes

Practical note approved by Physics department.

6.2. Required books.

Fundamentals of Physics Extended, 9th Edition, David Halliday, Robert Resnick, Jearl Walker (2011)

6.3. Recommended books.

6.4. Periodicals, Web sites, etc.

http://www.Physics2000 http://www.Physics today

7. Facilities required for teaching and learning:

Using a microphone in Lab Using a black board Group Discussions Equpmints

Course coordinator: Prof. Dr. Mohamed Abdel-Moneim Dr. Asmaa Gaber

Head of the Department: Date: 2022-2023 Prof. Dr. Saeed El-Sayed Abdel Ghany

Course Specification 203 G: Survey

A. Affiliation		
Relevant program:	B.Sc. in Geology	Program
Department offering the	program:	Department of Geology
Department offering the	course:	Department of Geology
Academic year/level:		Second level
-		

B. Basic information		
Title: Survey	Code:203G	Year/level: second level
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical: 2	Total:4 h/week

C. Professional information

1. Course Learning Objectives:

This course is designed to introduce students to fundamentals and methods of survey and applications in different fields. The students are expected to investigate devices and tools used in survey methods, and work on projects in the survey field.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- **a1.** Recoginze the role of survey in geological and engineering applications.
- **a2.** Identify the survey problem and ways to solve.
- **a3.**Characterize each type of the tools and methods used in geological and civil survey applications.
- a4.Realizehow survey is important for land use and town planning.

b. Intellectual skills:

On successful completion of the course, the student should be able to

- **b1.** Organize the project and set up a survey plan.
- **b2.** Decide which survey method and tools are to be used.
- **b3.** Analyze the various projection results for a 3-D body.
- **b4.** Investigate the distribution of points, elevations, altitude and positioning problems.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. Analyze survey measurements and plan a project.
- **c2.** Use the survey tools in mapping buildings and mountains.
- c3. Draw interpretations of survey measurements and projections.

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** Review available literature and study the area.
- d2. Interpret measurements using software to write a report.

d3.Apply knoweldge and training in survey problems.d3. Working a group and manage time and effort.

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and definitions	2		2
2. Construction and mining survey	4		4
3. Cartography and survey	4		4
4. Types of deviations	4		4
5. Survey methods and techniques	4		4
6. Survey tools	4		4
7. Applications in Geology and Engineering	4		4
8. Revision and feedback	2		2
Total hours	28		28

4. Teaching and Learning methods:

	Inte	ended Learning Outcomes	ecture	Presentations	Discussions & Seminars	ractical	Problem solving	Srain storming
	a1.	Recognize the role of survey in geological and engineering applications.	□ ✓	I		1		
lge & ınding	a2.	Identify the survey problem and ways to solve.		\checkmark	~			
Knowlee Understa	a3.	Characterize each type of the tools and methods used in geological and civil survey applications.	~	\checkmark	~			
	a4.	Demonstrate how survey is important for land use and town planning.	\checkmark				\checkmark	\checkmark
्र	b1.	Organize the project and set up a survey plan.			\checkmark	\checkmark		
ıl Skil	b2.	Decide which survey method and tools are to be used.	\checkmark					
llectus	b3.	Analyze the various projection results for a 3-D body.				\checkmark	~	\checkmark
Inte	b4.	Investigate the distribution of points, elevations, altitude and positioning problems.	\checkmark	\checkmark	~	\checkmark		
Practical and professional	c1.	Analyze survey measurements and plan a project.		\checkmark				
skills	c2.	Use the survey tools in mapping buildings and mountains.	~	\checkmark	\checkmark			

	c3.	Draw interpretations of survey measurements and projections.			~	~	
S	d1.	Review available literature and study the area.	\checkmark			~	\checkmark
ıl Skill	d2.	Interpret measurements using software to write a report.			\checkmark		
enera	d3.	Apply knoweldge and training in survey problems.	\checkmark		\checkmark		
6	d4.	Work in a group and manage time and effort.			~	~	

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude.
- **5.2.** Assignments to assess the student independent work.
- **5.3.** Written mid-term exam to ensure the student progress and discover the shortage.
- **5.4.** Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs b, c	Thirteenth week	24 %
Oral exam	ILOs b, c	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

Contents	Kn	Knowledge and I			Inte	ellect	ual s	kills	Practical and			nd	General skills			
	un	derst	tandi	ng					pro	fessio	nal s	kills				
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and	х						Х						Х			
definitions																
Construction and mining		Х				Х					х					Х
survey																
Cartography and survey				Х												
Types of deviations			Х													
Survey methods and				Х										Х		
techniques																
Survey tools						Х				Х						
Applications in Geology		Х						Х						Х		
and Engineering																
Revision and feedback																

6- List of references:

6.1. Course notes Lecture notes prepared by the course instructor(s) Power point presentations

6.2. Required books. None

6.3. Recommended booksLand Surveyor Reference Manual, 4th edition by Andrew. L. Harbin6.4. Periodicals, Web sites, etc.None

7. Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinator: Head of the Department: Date: Prof. Dr. Refaat Osman Prof. Dr. Gamal El Qot Approved on 9/12/2015 (meeting number 390) and updated on 10/1/2018 (meeting number 419)

updated on 2022/2023

Course Specification 205 G: Hydrology

A-Affiliation

Relevant program:	B.Sc. in Geol	ogy Program
Department offering the	e program:	Department of Geology
Department offering the	e course:	Department of Geology
Academic year/level:		Second level
Course coordinator:		Prof. Dr. Mohamed El-Fakharany

B - Basic information

Title: Hydrology	Code:205G	Year/level: second level
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical: 2	Total:4 h/week

C - **Professional** information

1 – Course Learning Objectives:

This course is aimed at introducing students to principles of the hydrology, and to train students on recognition of the main concepts of water quality.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should be able to:

- a1. approach and solve basic problems in the field of hydrology,
- a2. explore locations of hydrology data and how to use them in hydrologic investigations,
- a3. realize how hydrology is interrelated with other natural and environmental science disciplines,
- a4. recognize the methods and techniques used in interpetation of the hydrology data.

b - Intellectual skills:

On successful completion of the course, the student should be able to:

- b1. Investigate the distribution undergroundwater.
- b2. Analyze hydrologic processes, particularly the processes of precipitation, evaporation, infiltration, and runoff.
- b3. explore methods of hydrologic analysis, including aquifer types, chemical constituents of groundwater
- b4. Evaluate Water for different uses.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,
- c2. report accurate observations and measurements,
- c3. Analyze the Rock types and quality of groundwater,

c4. Carry out scientific research and evaluate and make use of the material so acquired,

d - General skills:

On successful completion of the course, the student should be able to:

- d1. Work productively with others,
- d2: Communicate effectively in writing,
- d3. Organize and manage working time, schedule tasks, and meet deadlines,
- d4. Use computer, internet & communications.
- d5. Adhere to ethical and community linked thinking.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and course description	2	0	2
2. Water in nature, water types, The hydrologic cycle	2	0	2
3. Forms and types of precipitation	2	0	2
4. Evaporation – Transpiration	2	0	2
5. Surface Runoff and types of drainage basins	2	0	2
6- Groundwater-Vertical distribution of groundwater-	2	0	2
aquifer types			
7- Physical and chemical properties of water	2	0	2
8- Electrical properties of water, Total Dissident Solids-	2	0	2
Water Hardness			
9- Chemical constituents of groundwater	2	0	2
10-Dissolved Gases-Biological Character of	2	0	2
Groundwater-Radioactive Material of Groundwater			
11-Rock types and quality of groundwater	2	0	2
12-Evaluation of Water for different uses	2	0	2
13- water pollution, causes, sources and negative effects	2	0	2
14- Revision and Feedback	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1	approach and solve basic problems in the field of hydrology,	\checkmark					
edge & tanding	a2	explore locations of hydrology data and how to use them in hydrologic investigations,		\checkmark				
Knowl Unders	a3	realize how hydrology is interrelated with other natural and environmental science disciplines,		\checkmark	\checkmark	\checkmark		
	a4	recognize the methods and techniques used in interpetation of the hydrology data.,						
S	b1	investigate the distribution and migration of undergroundwater.	\checkmark			\checkmark		
tual Skil	b2	analyze hydrologic processes, particularly the processes of precipitation, evaporation, infiltration, and runoff.			\checkmark	\checkmark		
Intellec	b3	explore methods of hydrologic analysis, including aquifer types, chemical constituents of groundwater				\checkmark		\checkmark
	b4	Evaluate Water for different uses.						
sional	c1	acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,				\checkmark		
profes Is	c2	make and record accurate observations and measurements,	\checkmark			\checkmark	\checkmark	
and J skill	c3	Analyze the Rock types and quality of groundwater				\checkmark		
ictical	c4	analyze the various geological and structural issues of aquifers,				\checkmark		
Pra	c5	Carry out scientific research and evaluate hydrogeologic issues.						
	d1	work productively with others,						
ills	d2	communicate effectively in writing,						
eral Sk	d3	organize and manage working time, schedule tasks, and meet deadlines,				2		\checkmark
Gen	d4 d5	adhere to ethical and community linked			\checkmark			
		thinking						

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ½ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn un	owle derst	dge a tandi	and ng	Inte	ellect	ual s	kills	I pro	Praction fession	cal ar nal s	nd kills	C	leneral	skills	5
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course description	Х						х						Х			
Water in nature, water types, The hydrologic cycle		Х				X					X					Х
Forms and types of precipitation				x												
Evaporation – Transpiration			x													
Surface Runoff and types of drainage basins				x										Х		
Groundwater-Vertical distribution of groundwater-aquifer types						X				Х						
Physical and chemical properties of water		Х						Х						Х		
Electrical properties of water, Total Dissident Solids-Water Hardness			Х										х			
Chemical constituents of groundwater		х							Х						Х	
Dissolved Gases- Biological Character of Groundwater- Radioactive Material of Groundwater	Х						Х					X		X		

Rock types and quality		Х		Χ				Х		
of groundwater										
Evaluation of Water for	х					х			Х	
different uses										
Water pollution, causes,	Х									Х
sources and negative										
effects										
Revision and Feedback										

6- List of references:

6-1 Course notes

Course notes prepared by the course instructor(s) and approved by the Department council. **6-2 Required books.**

None

6-5 Recommended books

Hydrology Principles, Analysis, Design Revised 2nd edition Author: H. M. Raghunath Copyright © 2006 New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers pages 463.

Basic ground-water hydrology (1987) By RALPH C. HEATH Library of Congress Cataloging in Publication Data Geological Survey water-supply paper; 2220.

Study and interpretation of the chemical characteristics of natural water by Hem, J. D., 1985, 3 ed., U.S. Geol. Surv. Water Supply, paper No 2254, 263 p.

6-6 Periodicals, Web sites, etc.

www.google.com & <u>www.scincedirect.com</u>

7- Facilities required for teaching and learning:

Data show: Power point presentations

Sound system to ensure the ease listening

Using a blackboard

Course coordinator:	Prof. Dr. Mohamed El-Fakharany /
	Dr. Nehad Mahmoud

Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 210-G: Litho- and Biostratigraphy

A-Affiliation

Relevant program: Geology B.Sc. Pro	Geology B.Sc. Program						
Department offering the program:	Department of Geology						
Department offering the course:	Department of Geology						
Academic year/level:	Second level						

B - Basic information

Title: Litho- and Biostratigraphy	Code:210-G	Year/level: second level
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical: 2	Total:4 h/week

C - Professional information

1 – Course Learning Objectives:

- > The objectives of this course are to enable the students to identify the difference between the lithostratigraphy, biostratigraphy and chronostratigraphy.
- > To investigate the modern stratigraphic classification
- > To explain the stratigraphic procedures, relationships and stratigraphic correlation.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should be able to:

- a1- differentiate between the different types of the stratigraphy.
- a2- identify the main principles of stratigraphy.
- a3- recognize the different stratigraphic relationships and stratigraphic correlation.
- a4- identify the various kinds of the index fossils.
- a5- identify the standard biozones of the phanerozoic of Egypt and their various kinds.

b - Intellectual skills:

On successful completion of the course, the student should be able to:

- b1- solve the stratigraphic problems and deduce the data of the rock unit's correlation.
- b2- design the fossil tool in description the environmental condition.
- b3- identify the most common standard biozones of the phanerozoic.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

c1- draw the stratigraphic sections and correlate between the different rock units.

c2- differentiate the various kinds of biozones of some exposed rock stages and correlate them with some neighboring countries.

c3- interpret the litho-, biostratigraphic data.

c4- differentiate between the different lithostratigraphic units in the field.

d - General skills:

On successful completion of the course, the student should be able to:

- d1- Use computer, internet & communications.d2- Management, working in group & life-long learning.
- d3- Ethical behavior, community linked thinking.

3 – Contents

Topic	Lecture	Tutorial	Practical
	hours	hours	hours
1- Introduction to stratigraphy	2	0	2
2- The stratigraphic principles	2	0	2
3- Modern stratigraphic classification	2	0	2
4- The geologic time scale	2	0	2
5- The stratigraphic procedures	2	0	2
6- The stratigraphic relationships	2	0	2
7- The stratigraphic correlation	2	0	2
8- Introduction to biostratigraphy	2	0	2
9- The principles of biostratigraphy	2	0	2
10- The biozones and correlation using the index fossils	2	0	2
11- Methods of geological dating using index fossils and			
radiometric methods	2	0	2
12- The most common biozones through the Paleozoic	2	0	2
13- The most common biozones through the Mesozoic	2	0	2
14- The most common biozones through the Cenozoic	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
& ng	a1	differentiate between the different types of the stratigraphy.	х	0	х	0	0	x
lge ndi	a2	identify the main principles of stratigraphy.	Х	Х	0	0	0	0
nowled	a3	recognize the different stratigraphic relationships and stratigraphic correlation.	Х	0	0	0	0	x
ц Ип	a4	identify the various kinds of the index fossils.	х	х	0	0	Х	x
	a5	identify the standard biozones of the phanerozoic of Egypt and their various kinds.	X					

ıal	b1	solve the stratigraphic problems and deduce the data of the rock unit's correlation.	X	0	0	0	X	0
tellectı Skills	b2	design the fossil tool in description the environmental condition.	х	0	0	0	x	Х
Ini	b3	identify the most common standard biozones of the phanerozoic.	х	0	0	0	X	0
and nal	c1	draw the stratigraphic sections and correlate between the different rock units.	х	0	0	0	X	х
ractical professio skills	c2	differentiate the various kinds of biozones of some exposed rock stages and correlate them with some neighboring countries.	х	0	0	0	Х	х
I	c3	interpret the litho-, biostratigraphic data.	Х	0	0	0	Х	Х
	c4	differentiate between the different rock units in the field						
	d1	Use computer, internet & communications.	Х	х	0	0	0	Х
eneral kills	d2	Management, working in group & life-long learning.	X	X	0	0	0	X
S. St	d3	Ethical behavior, community linked thinking.	X	Х	0	0	х	X

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude.
- 5.2. Assignments to assess the student independent work,
- 5.3. A field trips.
- 5.4. Written mid-term exam to ensure the student progress and discover the shortage.
- 5.5. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a4, b1, b2, c1, d1	Fifth week	5 %
Mid-Term Exam	a1, a2, b1, b2, c1	Seventh week	5 %
Oral exam	a1, a2, a3, a4, b5, b1, c2, c3	Thirteenth week	10 %
Written exam	a1, a2, a3, a4, a5, b1, b2, b3,	Fourteenth week	80 %
	b4, b5, c1, c2, c3, and c4.		
	100 %		

-Course matrix

contents	ents Knowledge and			Intellectual skills			Practical and				General skills					
	understanding						professional skills									
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to	Х						Х						Х			
stratigraphy																
The Stratigraphic		Х				X					Х					Х
principles																

Modern stratigraphic classification				X										
The stratigraphic time			X											
The stratigraphic				x								x		
procedures				21								7		
The stratigraphic					Х				Х					
relationships														
The stratigraphic		х					Х					Х		
correlation														
Introduction to			Х								Х			
Biostratigraphy														
The principles of		Х						Х					Х	
biostratigraphy														
The Biozones and						Х				х		Х		
correlation using the														
Index fossils														
Methods of Geological			Х		Х						Х			
dating using index														
fossils and radiometric														
methods														
The most common		х							х				х	
biozones through the														
Paleozoic														
The most common		Х												Х
biozones through the														
Mesozoic														
The most common			Х									Х		
biozones through the														
Cenozoic														

6- List of references:

6-1 Course notes
Manual notes handle of Litho-, Biostratigraphy for students.
6-2 Required books.
none
6-7 Recommended books
1. Text book: Stratigraphy and sedimentation
Author:
2. Text book: Sedimentary Structures.
Author: Collinson, J. D. & Thompson, D. B. 1982.
3. Text book: Biostratigraphy: Microfossils and Geological Time
Author: Brian McGowran
Publisher: Cambridge University Press; 1 edition (January 1, 2008), 480 pages
6-8 Periodicals, Web sites, etc.
www.sciencedirect.com&www.geology.com

7- Facilities required for teaching and learning: Data show

Data show	
Using a blackboard	
Group discussions	
Course coordinators:	Prof. Dr. Gamal El Qot
Head of the Department:	Prof. Dr. Dr. Gamal El Qot
Date:	Approved on 9/12/2015 (meeting number 390) and updated on
	10/1/2018 (meeting number 419)

updated on 2022/2023

Course Specification 215-G: Invertebrate Paleontology

B.Sc. in Geology

Department offering the program: Department offering the course: Academic year/level: Department of Geology Department of Geology Second level

B - Basic information

Relevant program:

Title: Invertebrate Fossils	Code:215G
Teaching Hours:	Lectures: 2
-	Practical: 2

Year/level: Second level Tutorial: 0 Total:4 h/week

C - **Professional information**

1 – Course Learning Objectives:

This course is designed to introduce students to the principles of faunal interpretation as applied to the fossil record of the invertebrate phyla.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1.provide an overview of fundamental paleontologic principles such as thenature of fossils and the fossil record, concepts of organic evolution, methods of classification, biostratigraphy and paleoecology,
- a2. review the morphology, classification, life environments, and ranges of important invertebrate fossil groups,
- a3. demonstrate the basic paleontologic skillsrequired for more advanced paleontologic and litho and biostratigraphy.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

b1. differentiate between different types of fossil types,

b2.determine the stratigraphic units based on their funal content,

b3.demenostsate the basic and progressed techniques and methods stratigraphy,

b4.recognize the different formations based on their stratigraphic setting.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

c1. recognize the fossils and class of a given bed,

c2.analyze the stratigraphic units and fossils,

c3.use the fossil content to identify formations and their properties,

c4.apply the investigation results for bed classification and distinctions.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. collect data from sample examination and other data resources,
- d2. reproduce the results to meet the projected goals in an easy, readable final form,
- d3. collaborate and work in team smoothly adhere to ethics and manage time.
3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1- Introduction to invertebrate fossils	2	0	2
2- Phylum Porifera	2	0	2
3- Phylum Cnidaria	2	0	2
4- Phylum Brachiopoda	2	0	2
5- Phylum Mollusca	2	0	2
6- Class Bivalvia	2	0	2
7- Class Gastropoda	2	0	2
8- Class Cephalopoda	2	0	2
9- Phylum Echinodermata	2	0	2
10- Class Echinoidea	2	0	2
11- Phylum Arthropoda	2	0	2
12-Phylum Hemichordata	2	0	2
13- Applications into the geology of Egypt	2	0	2
14-Revision and course evaluation/open session	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lectures	Presentations	Discussions	Practical	Problem solving	Brain storming
nderstanding	a1	provide an overview of fundamental paleontologic principles such as thenature of fossils and the fossil record, concepts of organic evolution, methods of classification, biostratigraphy and paleoecology,	\checkmark			\checkmark		
dge & Uı	a2	review the morphology, classification, life environments, and ranges of important invertebrate fossil groups,						
Knowle	a3	demonstrate the basic paleontologic skills required for more advanced paleontologic and litho and biostratigraphy.		\checkmark		\checkmark		
lls	b1	differentiate between different types of fossil types,		\checkmark		\checkmark		
ual Ski	b2	determine the stratigraphic units based on their funal content,						\checkmark
tellect	b3	demenostsate the basic and progressed techniques and methods stratigraphy,						
In	b4	recognize the different formations based on their stratigraphic setting.	\checkmark	\checkmark			\checkmark	

nd kills	c1	recognize the fossils and class of a given bed,				\checkmark		
ll ar al s	c2	analyze the stratigraphic units and fossils,						
actica ession	c3 use the fossil content to identify formations and their properties,				\checkmark	\checkmark		\checkmark
Pr prof	c4	apply the investigation results for bed classification and distinctions.					\checkmark	\checkmark
kills	d1	collect data from sample examination and other data resources,				\checkmark		
leral S	d2	reproduce the results to meet the projected goals in an easy, readable final form,				\checkmark	\checkmark	\checkmark
Gen	d3	collaborate and work in team smoothly adhere to ethics and manage time.						

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semesterwork	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Knowledge and In understanding		Inte	ellect	ual s	kills	Practical and professional skills		General skills							
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to	Х						Х						Х			
Invertebrate fossils																
Phylum Porifera		X				x					X					X
Phylum Cnidaria				Χ												
Phylum Brachiopoda			Χ													
Phylum Mollusca				Χ										X		
Class Bivalvia						X				х						
Class Gastropod		Х						X						Х		
Class Cephalopoda			Χ										Х			
Phylum Echinodermata		Х							х						х	
Class Echinoidea	Х						Х					Х		X		
Phylum Arthropoda			Χ			X							Х			
Phylum Hemichordata		X								X					X	

Applications into the	х								Х
geology of Egypt									
Revision and course		Х						х	
evaluation/open session									

6- List of references:

6-1 Course notes

Power point presentations
6-2 Required books.
none
6-9 Recommended books
1. Text book: Fossils at a Glance
Author: Clare Milsom
Liverpool John Moores University Sue Rigby University of Edinburgh
Second edition 2010
2. Text book: Fossil invertebrates
Author: Boardman, R. S., Cheetham1987.
3. Text book: Invertebrate paleontology and Evolution
Author: Clarkson, E. N. K., 1986.
6-10 Periodicals, Web sites, etc.

http://www.palaeos.comwww.cmnh.org/site/researchandcollections_InvertebratePaleontology.aspx http://www.webpages.uidaho.edu/~mgunter/opt_min/article.pdf

7- Facilities required for teaching and learning:

Power point presentations Data show Sound system to ensure the ease listening Group discussions

Course coordinator:	Prof. Dr. Gamal El Qot
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	Approved on 9/12/2015 (meeting
	number 390) and updated on
	10/1/2018 (meeting number 419)
	updated on 2022/2023

Course Specification 216 G: Micropalaentology

Relevant program: B. Sc.i	n Geology Program
Department offering the program	a: Department of Geology
Department offering the course:	Department of Geology
Academic year/level:	Second level
B. Basic information	

Title: Micropalaentology	Code: 216G	Year/level: Second level
Teaching Hours:	Lectures: 2	Tutorial: 0
2	Practical: 2	Total:4h/week

C. Professional information

1. Course Learning Objectives:

This course aims to deliver a theoretical and practical understanding of how graduates can understand microfossils, their size, characters and range. Detailed investigation and examination of fossilized protistan life forms that are most commonly used in evolutionary studies applicable to biostratigraphy, paleoceanography, and global climate change.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- **a1.**provide an overview of fundamental paleontologic principles such as the nature of fossil record, concepts of organic evolution, methods of classification, biostratigraphy and paleoecology,
- **a2.**review the morphology, classification, life environments, and ranges of important microfossil groups,
- **a3.**demonstrate the basic paleontologic skills required for more advanced paleontology, litho and biostratigraphy.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** differentiate between different types of microfossils.
- **b2.** determine the types of microfossils.
- **b3.**demenostsate the basic and progressed techniques and methods in micropalenotology.
- **b4.** Application of these microfossils in the fields of oil-exploration.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. recognize the fossil content a given bed,
- c2. analyze the kinds of a microfossils,

- c3. use the microscope and identify microfossils and their properties,
- **c4.** apply the investigation results for classification and distinctions.

d. General skills:

On successful completion of the course, the student should be able to:

- d1. collect data from sample examination and other data resources,
- d2. reproduce the results to meet the projected goals in an easy, readable final form,
- **d3.** collaborate and work in team smoothly adhere to ethics and manage time.

3 – Contents

Tonio	Lecture	Tutorial	Practical
Торіс	hours	hours	hours
1. Introduction and course description	2	0	2
2. Foraminiferal general history	2	0	2
3. Benthic and planktic foraminifera	2	0	2
4. Foraminiferal application in the stratigraphy.		0	
5. Morphology of ostracods.	2	0	2
6. Ostracods distribution and ecology.	2	0	2
7. Recognition of nannoplankton (coccoliths).	2	0	2
8. Living coccoliths and their ecology and classification.		0	
9. General history of calcareous nannofossils and	C	0	2
application in stratigraphy and paleoclimatology.	Z	0	2
10. Diatom: living diatom, structure and morphological			
characteristics, diatom symmetry, ornamentation and	2	0	2
taxonomy.			
11. Radiolaria: distribution and ecology, sedimentation			
and dissolution, classification, and geologic record	2	0	2
and applications.			
12. Dinoflagellates: Living dinoflagellate and its life			
history, Ecology, classification, dinoflagellate	2	0	2
stratigraphic position and applications.			
13. Explanation the role of microfossils in	2	0	2
paleoenvironmental interpretation.	2	0	2
14. Revision and course evaluation/open session	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

	Iı	ntended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
nderstanding	a1.	provide an overview of fundamental paleontologic principles such as the nature of fossil record, concepts of organic evolution, methods of classification, biostratigraphy and paleoecology,	~	~		~		
dge & U	a2.	review the morphology, classification, life environments, and ranges of important microfossil groups,	~	~		✓	~	✓
Knowle	a3.	demonstrate the basic paleontologic skills required for more advanced paleontology, litho and biostratigraphy.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
ills	b1.	differentiate between different types of microfossils,	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Sk	b2.	determine the types of microfossils,	\checkmark			\checkmark		
ellectual	b3.	demenostsate the basic and progressed techniques and methods in micropalenotology,	\checkmark	\checkmark		\checkmark	\checkmark	
Int	b4.	Application of these microfossils in the fields of oil-exploration.	\checkmark	\checkmark	\checkmark	\checkmark		
р Т	c1.	recognize the fossil content a given bed,		\checkmark	\checkmark		\checkmark	
an ona	c2.	analyze the kinds of a microfossils,	\checkmark	\checkmark	\checkmark			
ctical fessic skills	c3.	use the microscope and identify microfossils and their properties,	\checkmark		\checkmark		\checkmark	
Pra pro	c4.	apply the investigation results for classification and distinctions.	\checkmark		\checkmark	\checkmark		\checkmark
kills	d1.	collect data from sample examination and other data resources,	\checkmark	\checkmark	\checkmark	\checkmark		
eral S	d2.	reproduce the results to meet the projected goals in an easy, readable final form,	\checkmark	\checkmark		\checkmark		
Gen	d3.	collaborate and work in team smoothly adhere to ethics and manage time.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and			Inte	Intellectual skills			Practical and				General skills			5
	un	derst	tandi	ng					professional skills							
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course	Х						Х						Х			
description																
Foraminiferal general		Х				Х					Χ					Х
history																
Benthic and planktic				Х												
foraminifera																
Foraminiferal			Х													
application in the																
stratigraphy.																
Morphology of				Х										х		
ostracods.																
Ostracods distribution						Х				Х						
and ecology.																
Recognition of		Х						Х						х		
nannoplankton																
(coccoliths).																
Living coccoliths and			Х										х			
their ecology and																
classification.																
General history of		Х							Х						Х	
calcareous nannofossils																
and application in																
stratigraphy and																
paleoclimatology.																
Diatom: living diatom,	Х						Х					Х		Х		
structure and																
morphological																
characteristics, diatom																
symmetry,																
ornamentation and																
taxonomy.																
Radiolaria: distribution			Х			Х							Х			
and ecology,																
sedimentation and																
dissolution,																
classification, and																
geologic record and																
applications.																

Dinoflagellates: Living	Х					Х			Х	
dinoflagellate and its life										
history, Ecology,										
classification,										
dinoflagellate										
stratigraphic position										
and applications.										
Explanation the role of	х									Х
microfossils in										
paleoenvironmental										
interpretation.										
Revision and course		х						Х		
evaluation/open session										

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s)approved by the department council. **6.2. Required books.**

None

6.3. Recommended books

William Nesse 2012 Introduction to Optical Mineralogy Oxford University Press; Fourth Edition (March 31, 2012) 368 pages, William Nesse 2012 Introduction to mineralogy, Oxford University Press; 2 edition (August 8, 2011) 496 pages

10/1/2018 (meeting number 419)

updated on 2022/2023

6.4. Periodicals, Web sites, etc.

<u>http://www.xtal.iqfr.csic.es/Cristalografia/parte_03-en.html</u> <u>http://www.webpages.uidaho.edu/~mgunter/opt_min/article.pdf</u> <u>http://dave.ucsc.edu/myrtreia/crystal.html</u>

7. Facilities required for teaching and learning:

Power point presentations	
Data show	
Sound system to ensure the e	ease listening
Group discussions	
Course coordinator:	Prof. Hassan El Sheikh
	Dr. Fatma Shaker
	Dr. Mohamed El Beshtway
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	Approved on 9/12/2015 (meeting
	number 390) and updated on

Course Specification

219G: Fossilization and Plant Fossils

A-Affiliation

Relevant program:	B. Sc.in Geology	
Department offering	the program:	Department of Geology
Department offering	the course:	Department of Geology
Academic year/level:		Second level

B - Basic information

Title: Fossilization and plant	Code:219G	Year/level: Second level
fossils		
Teaching Hours:	Lectures:2	Tutorial: 0
-	Practical:2	Total:4 h/week

C - **Professional** information

2 – Course Learning Objectives:

This course aims to deliver a theoretical and practical understanding of how graduates recognize of fossilization and plant fossils, their size, characters and range. Detailed investigation and examination of fossilized protistan life forms that are most commonly used in evolutionary studies applicable to biostratigraphy, paleoceanography, and global climate change.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- al.provide an overview of fundamental paleontologic principles such as the nature of fossils and the fossil record, concepts of organic evolution, methods of classification, biostratigraphy and paleoecology,
- a2. review the morphology, classification, life environments, and ranges of important invertebrate fossil groups,
- a3. demonstrate the basic paleontologic skills required for more advanced paleontologic and litho and biostratigraphy,

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. differentiate between different types of fossils forms,
- b2. determine the symmetry elements of fossils line materials,
- b3.demenostsate the basic and progressed techniques and methods in fossils,

b4.recognize the different beds based on their properties.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. recognize the fossils system and class of a given bed,
- c2. analyze the symmetrical elements of a fossilsline material,
- c3. use the microscope and identify beds and their fossils properties,

c4.apply the investigation results for bed classification and distinctions.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. collect data from sample examination and other data resources,
- d2. reproduce the results to meet the projected goals in an easy, readable final form,
- d3. collaborate and work in team smoothly adhere to ethics and manage time.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1- Introduction and course description	2	0	2
2- Fossils, fossilization process, conditions promote	2	0	2
fossilization			
3- Types of fossils	2	0	2
4- Classification of organisms, bases of classification of	2	0	2
fossils			
5- Binomial Nomenclature	2	0	2
6- Plant-fossils through geologic record	2	0	2
7- Classification of plant fossils	2	0	2
8- Pteriodophyta, Psilophyta, Lycopods, Clamophyta,	2	0	2
Pterophytes, Pteridosperm			
9- Fossils of Gymnospermae	2	0	2
10-Fossils of Angiosperms	2	0	2
11-Uses of plant fossils in correlation and facies	2	0	2
interpretation and age determination.			
12- The value of plant fossils in paleoecology and	2	0	2
environmental studies.			
13- Studying some examples of plant fossils from the	2	0	2
geology of Egypt.			
14-Revision and course evaluation/open session	2	0	2
Total hours	28	0	28

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1	review the evolution and history of	\checkmark				ĺ	Ī
vledge & standing	a2	recognize the applications of fossils forms in geological and other natural science fields,						√
Know Under	a3	describe the fossils forms and related fossils properties,					\checkmark	
	a4	demonstrate the basics and theories of bed optics using binocular light,				\checkmark		
slli	b1	differentiate between different types of fossils forms,						
ual Ski	b2	determine the symmetry elements of fossils line materials,	\checkmark		<u> </u>	\checkmark		
tellect	b3	demonstrate the basic and progressed techniques and methods to fossils bedogy,					\checkmark	
In	b4	recognize the different beds based on their fossil's properties.		V		$\overline{\mathbf{v}}$		
l	c1	recognize the fossils system and class of a given bed,						
al and nal sk	c2	analyze the symmetrical elements of a fossils line material,						
Practic	c3	use the polarizing microscope and identify beds and their fossils properties,					\checkmark	
I br(c4	apply the investigation results for bed classification and distinctions.						
kills	d1	collect data from sample examination and other data resources,						
eral Sl	d2	reproduce the results to meet the projected goals in an easy, readable final form,						
Gen	d3	collaborate and work in team smoothly adhere to ethics and manage time.	\checkmark			\checkmark	\checkmark	

4 - Teaching and Learning methods:

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,

5.4. Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Knowledge and Inte		Intellectual skills		Practical and				General skills							
		<u>a</u> 2		ng 1	h1	h2	h3	b /					d1	42	43	d4
Introduction and course	v	a2	as	a -1	01	02	05 v	04	CI	02	05	C 4	v	u2	us	u 4
description	Λ						Λ						Λ			
Eossils fossilization		v				v					v					v
process conditions		А				A					Λ					А
process, conditions																
Types of fossils				v												
Classification of				X												
classification of			Х													
organisms, bases of																
Classification of lossifs																
Binomial Nomenclature				X										X		
Plant-fossils through						X				X						
geologic record																
Classification of plant		Х						Х						Х		
tossils																
Pteriodophyta,			Х										Х			
Psilophyta, Lycopods,																
Clamophyta,																
Pterophytes,																
Pteridosperm																
Fossils of		Х							Х						Х	
Gymnospermae																
Fossils of Angiosperms	X						Х					Х		Х		
Uses of plant fossils in			Х			X							Х			
correlation and facies																
interpretation and age																
determination.																
The value of plant fossils		Х								Х					Х	
in paleoecology and																
environmental studies.																
Studying some examples		Х														Х
of plant fossils from the																
geology of Egypt.																
Revision and course			Х											Х		
evaluation/open session																

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s)approved by the department council.

6-2 Required books.

None

6-11 Recommended books

William Nesse 2012 Introduction to FossilsBedogy
Oxford University Press; Fourth Edition edition (March 31, 2012) 368 pages,
William Nesse 2012 Introduction to bedogy, Oxford University Press; 2 edition (August 8, 2011) 496 pages

6-12 Periodicals, Web sites, etc.

http://www.xtal.iqfr.csic.es/Cristalografia/parte_03-en.html http://www.webpages.uidaho.edu/~mgunter/opt_min/article.pdf http://dave.ucsc.edu/myrtreia/fossils.html

7- Facilities required for teaching and learning:

Power point presentations Data show Sound system to ensure the ease listening Group discussions

Course coordinator:	Prof. Dr. Gamal El Qot Prof. Dr. Hassan El Sheikh Dr. Fatma Shaker
Head of the Department: Date:	Prof. Dr. Gamal El Qot Approved on 9/12/2015 (meeting number 390) and updated on 10/1/2018 (meeting number 419) updated on 2022/2023

Course Specification 230 G: Rock Forming Minerals

A-Affiliation

Relevant program:B. Sc.in GeologyDepartment offering the program:DepartmentDepartment offering the course:DepartmentAcademic year/level:Second level

Department of Geology Department of Geology Second level

B - Basic information

Title: Rock forming minerals	Code:230G
Teaching Hours:	Lectures: 2
-	Practical:2

Year/level: Second level Tutorial: 0 Total:4 h/week

C - **Professional information**

3 – Course Learning Objectives:

This course is designed to deliver a theoretical and practical understanding of how students can identity the basic principles of mineralogy, identification of minerals, their associations, stability means understanding geological processes. Although rockforming minerals (mainly silicates) will be emphasized, students will be able to identify other minerals represent common minerals in earth crustal rocks.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1.provide an overview of fundamental mineralogical principles such as thenature of mineral and mineral groups,
- a2. review the genesis, classification, and distribution of important mineral groups,
- a3. identifythe basic optical and structural mineralogy skillsrequired for more advanced mineralogical and petrological,

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. differentiate between different types of silicate minerals,
- b2. determine the crystallization sequence of silicate formation,

b3.review the basic and progressed techniques and methods to optical mineralogy,

b4.recognize the different minerals based on their optical properties.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. recognize the physical and optical properties of a given mineral,
 - c2.analyze the optical propoerties of a given rock forming mineral,

c3.use the polarizing microscope and identify minerals and their optical properties,

c4.apply the investigation results for mineral classification and distinctions.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. collect data from sample examination and other data resources,
- d2. reproduce the results to meet the projected goals in an easy, readable final form,
- d3. collaborate and work in team smoothly adhere to ethics and manage time.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1- Introduction and course description	2	0	2
2- What is mineral?	2	0	2
3- Classification of minerals	2	0	2
4- How minerals form	2	0	2
5- Mineral composition of mantle and core	2	0	2
6- Mineral composition of earth crust	2	0	2
7- Silicate minerals	2	0	2
8- Carbonate minerals	2	0	2
9- Phosphate, oxides, and sulfate	2	0	2
10- Sulfide minerals	2	0	2
11- Minerals and the society	2	0	2
12- Mineral economics	2	0	2
13- Ore mineral deposits and tectonism	2	0	2
14-Revision and course evaluation/open session	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
edge & tanding	a1	provide an overview of fundamental mineralogical principles such as thenature of mineral and mineral groups,	\checkmark	\checkmark		\checkmark		
Knowle Inderst	a2	review the genesis, classification, and distribution of important mineral groups,					\checkmark	\checkmark
I D	a3							

	a4	demonstrate the basic optical and structural mineralogy skillsrequired for more						
		advanced mineralogical and petrological,	1					1
lls	b1	differentiate between different types of silicate minerals,		\checkmark				
ıal Ski	b2	determine the crystallization sequence of silicate formation,	\checkmark			\checkmark		
tellect	b3	review the basic and progressed techniques and methods to optical mineralogy,	\checkmark	Х		\checkmark	\checkmark	
In	b4	recognize the different minerals based on their optical properties.	\checkmark		\checkmark	\checkmark		
l ills	c1	recognize the physical and optical properties of a given mineral,					\checkmark	
al and nal sk	c2	analyze the optical propoerties of a given rock forming mineral,		\checkmark				
ractic	c3	use the polarizing microscope and identify minerals and their optical properties,					\checkmark	
Prc	c4	apply the investigation results for mineral classification and distinctions.						\checkmark
kills	d1	collect data from sample examination and other data resources,	\checkmark	\checkmark		\checkmark		
leral S	d2	reproduce the results to meet the projected goals in an easy, readable final form,						
Gen	d3	collaborate and work in team smoothly adhere to ethics and manage time.						

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and In				ellect	ual s	kills	I	Practic	cal ar	nd	General skills			
	un	derst	tandi	ng					pro	fessio	nal s	kills				
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course	х						Х						Х			
description																
What is mineral?		X				Х					Χ					Х
Classification of				Х												
minerals																
How minerals form			X													
Mineral composition of				Х										х		
mantle and core																
Mineral composition of						Х				х						
earth crust																
Silicate minerals		Х						Х						Х		
Carbonate minerals			Х										Х			
Phosphate, oxides, and		Х							Х						Х	
sulfate																
Sulfide minerals	Х						Х					Х		Х		
Minerals and the society			Х			X							Х			
Mineral economics		Х								Х					Х	
Ore mineral deposits and		Х														Х
tectonism																
Revision and course evaluation/open session			X											Х		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s)approved by the department council.

6-2 Required books.

None **6-13 Recommended books** Introduction to the Rock-Forming Minerals Third Edition by W. a. Deer, R. a. Howie, J. Zussman Paperback: 510 pages Publisher: Mineralogical Society; Third edition (May 16, 2013) Language: English ISBN-10: 0903056275 ISBN-13: 978-090305627

6-14 Periodicals, Web sites, etc.

http://www.indiana.edu/~geol105/images/gaia_chapter_5/rock_forming_minerals.htm

7- Facilities required for teaching and learning:

Power point presentations Data show Sound system to ensure the ease listening Group discussions

Course coordinator:	Prof. Abdel Aziem M. Mehanna
Head of the Department:	Prof. Gamal El Qot
Date:	2022/2023

Course Specification

232 G: Principals of Petrology

A. Affiliation		
Relevant program: B	. Sc.in Geology	
Department offering the pro	gram: Dej	partment of Geology
Department offering the cou	irse: Dej	partment of Geology
Academic year/level:	Sec	ond level
B. Basic information		
Title: Principals of Petrolog	y Code:232G	Year/level: Second level
Teaching Hours:	Lectures: 2	Tutorial: 0
č	Practical: 2	Total:4 h/week

C. Professional information

1. Course Learning Objectives:

This course is designed to deliver theoretical and practical understanding of magmatic crystallization, classification of igneous rocks and their textures, acidic rocks, intermediate rocks, basic rocks and ultrabasic rocks. It also introduces the major classification of metamorphic rocks based on T & P and chemical active fluids, metasomatism and additive processes of metamorphism.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

a1.provide an overview of fundamental of magama crystallization, **a2.**review the different processes of magma crystallization and evolution,

a3.recognize the different types of rocks and their petrogrnesis,

b. Intellectual skills:

On successful completion of the course, the student should be able to.

b1. differentiate between different types of rocks,

b2. determine the texture and mineral composition of igneous and metamorphic rocks,

b3.analyzethe mineral composition of rocks and their tectonic setting,

b4.recognize the different minerals based on their optical properties.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

c1. recognize the rock type and class, and genesis,

c2. analyze the mineral composition of a given rock,

c3. use the polarizing microscope and identify minerals and their optical properties, **c4.** apply the investigation results for rock classification and distinctions.

d. General skills:

On successful completion of the course, the student should be able to:

d1. collect data from sample examination and other data resources,

d2. reproduce the results to meet the projected goals in an easy, readable final form,

d3. collaborate and work in team smoothly adhere to ethics and manage time.

3 – Contents

Tonic	Lecture	Tutorial	Practical
Торк	hours	hours	hours
1- Introduction and course description	2		2
2- What is a rock?	2		2
3- Classification of rocks	2		2
4- How rocks form?	2		2
5- Mineral composition of mantle rocks	2		2
6- Mineral composition of crustal rocks	2		2
7- Rock textures	2		2
8- Mineral composition of igneous and metamorphic	2		2
rocks			
9- Phosphate, oxides, and sulfate	2		2
10- Rock cycle and tectonism	2		2
11-Rock forming minerals	2		2
12- Minerals and rocks under the microscope	2		2
13-Mineral deposits and rock genesis	2		2
14-Revision and course evaluation/open session	2		2
Total hours	28		28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
k Ig	a1.	review the evolution and history of the different terms in petrology,	\checkmark	\checkmark		\checkmark		
edge å tandir	a2.	recognize the earth zones and compositions of earth shells,	\checkmark	\checkmark		\checkmark		
s nowl nders	a3.	describe the classification of rocks (rock cycle),	\checkmark	\checkmark		\checkmark		
n H	a4.	demonstrate the basics and theories of the origin of igneous rocks,	\checkmark	\checkmark		\checkmark		
llectual kills	b1.	differentiate between different forms of Igneous Rocks as well as the intrusions and their relation to geologic structures,	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Inte] S	b2.	determine the structures and textures of igneous rocks,	\checkmark			\checkmark		

	b3.	Demonstrate the classification of igneous rocks,	\checkmark	\checkmark		\checkmark	\checkmark	
	b4.	Recognize some types of igneous rock types of crystal forms.	\checkmark	\checkmark	\checkmark	\checkmark		
d cills	c1.	recognize the metamorphic petrology and metamorphism,		\checkmark	\checkmark	\checkmark	\checkmark	
cal an nal sk	c2.	determine the agents, kinds, and depth zones of metamorphism,	\checkmark	\checkmark		\checkmark		
ractic fessio	c3.	use the polarizing microscope and identify the metamorphic textures,	\checkmark	\checkmark		\checkmark	\checkmark	
ord Pro	c4.	apply the investigation results for rock classification and distinctions.	\checkmark	\checkmark		\checkmark		
kills	d1.	collect data from sample examination and other data resources,	~	~	\checkmark	\checkmark		
eral S	d2.	reproduce the results to meet the projected goals in an easy, readable final form,	\checkmark	\checkmark		\checkmark		
Gen	d3.	collaborate and work in team smoothly adhere to ethics and manage time.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ½ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn un	owle derst	dge a tandi	and ng	Inte	Intellectual skills Practical and professional skills							General skills				
	a1	a1 a2 a3 a4 b			b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4	
Introduction and course description	X						Х						Х				
What is a rock?		х				x					Х					х	
Classification of rocks				х													
How rocks form?			Х														

Mineral composition of				X								X		
Mineral composition of					Х				Х					
crustal rocks														
Rock textures		Х					Х					Х		
Mineral composition of			Х								х			
igneous and														
metamorphic rocks														
Phosphate, oxides, and		х						Х					Х	
sulfate														
Rock cycle and	х					х				х		Х		
tectonism														
Rock forming minerals			Х		Х						Х			
Minerals and rocks		х							х				Х	
under the microscope														
Mineral deposits and		х												х
rock genesis														
Revision and course			X									Х		
evaluation/open session														

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s)approved by the department council.

6.2. Required books.

None

6.3. Recommended books

> The principles of petrology: an introduction to the science of rocks. By Tyrrell, George Walter. Publisher: Springer Science & Business Media. 2012

Principles of Igneous and Metamorphic Petrology

by Anthony Philpotts, Jay Ague. Publisher: Cambridge University Press; 2nd edition (February 2, 2009), 686 pages

6.4. Periodicals, Web sites, etc.

http://www.xtal.iqfr.csic.es/Cristalografia/parte_03-en.html http://www.webpages.uidaho.edu/~mgunter/opt_min/article.pdf http://dave.ucsc.edu/myrtreia/crystal.html

7. Facilities required for teaching and learning:

Power point presentations Data show Sound system to ensure the ease listening Group discussions

Course coordinator:	Prof. Abdel Aziem M. Mehanna Asst.Prof. Adel Maady
Head of the Department:	Prof. Gamal El Qot
Date:	2022/2023

Course Specification

235 G: Crystallography and optical mineralogy

A. Affiliation		
Relevant program: B. Sc.in	Geology	
Department offering the program: Department offering the course: Academic year/level:	Departn Departn Second I	nent of Geology nent of Geology level
B. Basic information		
Title: Crystallography and optical mineralogy	Code:235G	Year/level: Second level
Teaching Hours:	Lectures: 2	Tutorial: 0
-	Practical:3	Total:5 h/week

C. Professional information

1. Course Learning Objectives:

This course is designed to introduce students to the different systems and classes of crystal forms for mineralogical applications and solid-state physics. Identifying the crystal system and related properties is a clue to recognize the behavior of crystalline materials. Optical mineralogy deals with the polarizing microscope and uses the optical properties of minerals for their identification. Fundamentals of the polarized light and birefringence form a significant part serves a wide variety of applications in physics and chemistry.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should be able to:

- **a1.**detect the interrelationship between crystallography and optical mineralogy,
- **a2.**recognize the applications of crystal forms and symmetry in geological and other natural science fields,
- a3.describe the crystal forms and identify each shape if composite,
- a4. demonstrate thebasics and theories of mineral optics using polarized light.

b - Intellectual skills:

On successful completion of the course, the student should be able to:

b1. Differentiate between different types of crystal forms,

b2. Determine the symmetry elements of crystalline materials,

b3.Envisagethe basic and advanced techniques and methods to optical mineralogy,

b4.Study the different minerals based on their optical properties.

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

c1. recognize the crystal system and class of a given mineral,

c2.checkthe symmetrical elements of a crystalline material,

c3.use the polarizing microscope and identify minerals and their optical properties, **c4.**apply the investigation results for mineral classification and distinctions.

d. General skills:

On successful completion of the course, the student should be able to:

- d1. collect data from sample examination and other data resources,
- d2. reproduce the results to meet the projected goals in an easy, readable final form,
- **d3.** collaborate and work in team smoothly adhere to ethics and manage time.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and course description	2		2
2. Fundamentals of crystallography	2		2
3. Crystal properties and crystal systems	2		2
4. The 32 crystallographic classes: classification	2		2
5. The isometric and tetragonal systems	2		2
6. Orthorhombic and monoclinic systems	2		2
7. Hexagonal and trigonal systems	2		2
8. Triclinic system and composite crystal forms	2		2
9. Classification of minerals	2		2
10. The polarizing microscope: properties normal light	2		2
11. Optical properties of minerals in plane polarized light	2		2
12. Optical properties of minerals between crossed Nicols	2		2
13. Isotropic and anisotropic minerals	2		2
14. Revision and course evaluation/feedback	2		2
Total hours	28		28

4. Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1.	Detect the interrelationship between crystallography and optical mineralogy	\checkmark	\checkmark		\checkmark		
rledge & standing	a2.	Recognize the applications of crystal forms and symmetry in geological and other natural science fields	\checkmark	\checkmark				\checkmark
Know Jnder	a3.	Describe the crystal forms and identify each shape if composite	\checkmark	\checkmark		~	~	~
	a4.	Demonstrate thebasics and theories of mineral optics using polarized light.	\checkmark	\checkmark		\checkmark		
ills	b1.	Differentiate between different types of crystal forms	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
ıal Sk	b2.	Determine the symmetry elements of crystalline materials	\checkmark			\checkmark		
ellecti	b3.	Envisage the basic and advanced techniques and methods to optical mineralogy	\checkmark	\checkmark		~	~	
Int	b4.	Study the different minerals based on their optical properties	\checkmark	~	~	\checkmark		
d cills	c1.	Recognize the crystal system and class of a given mineral		~	~	~	~	
al an nal sk	c2.	Check the symmetrical elements of a crystalline material	\checkmark	\checkmark		~		
ractic fessio	c3.	Use the polarizing microscope and identify minerals and their optical properties	\checkmark	\checkmark		~	~	
P	c4.	Apply the investigation results for mineral classification and distinctions.	\checkmark	\checkmark		\checkmark		\checkmark
kills	d1.	Collect data from sample examination and other data resources	\checkmark	\checkmark	\checkmark	\checkmark		
eral Sl	d2.	Reproduce the results to meet the projected goals in an easy, readable final form	\checkmark	\checkmark		\checkmark		
Gen	d3.	Collaborate and work in team smoothly adhere to ethics and manage time.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

Contents	Knowledge and		Intellectual skills		Practical and professional skills				General skills							
	a1	a^2	23	ng 94	h1	h2	h3	h4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course	x	u2	us	41	01	02	x	01	01	02	05		x	42	us	41
description																
Fundamentals of		x				x					x					x
crystallography																
Crystal properties and				х												
crystal systems																
The 32 crystallographic			X													
classes: classification																
The isometric and				х										х		
tetragonal systems																
Orthorhombic and						Х				Х						
monoclinic systems																
Hexagonal and trigonal		Х						Х						Х		
systems																
Triclinic system and			X										Х			
composite crystal forms																
Classification of		Х							Х						Х	
minerals																
The polarizing	Х						Х					Х		Х		
microscope: properties																
normal light																
Optical properties of			х			Х							Х			
minerals in plane																
polarized light																
Optical properties of		х								х					Х	
minerals between																
crossed Nicols																
Isotropic and anisotropic		х														Х
minerals																
Revision and course			X											X		
evaluation/feedback																

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s)approved by the department. **6.2. Required books.**

None

6.3. Recommended books

Introduction to Crystallography and Mineral Crystal Systems <u>http://www.rockhounds.com/rockshop/xtal/index.shtml</u> William Nesse 2012 Introduction to Optical Mineralogy Oxford University Press; Fourth Edition (March 31, 2012) 368 pages,

6.4. Periodicals, Web sites, etc.

http://dave.ucsc.edu/myrtreia/crystal.html

7. Facilities required for teaching and learning:

Power point presentations Data show Sound system to ensure the ease listening Group discussions

Course coordinator:	Prof. Abdel Aziem M. Mehanna Asst.Prof. Moustafa M. Mogahed
Head of the Department:	Prof. Gamal El Qot
Date:	2022/2023

Course Specification 240 G: Geographic Information System (GIS)

A-Affiliation

Relevant program:	B. Sc.in Geology	
Department offering t	Department of Geology	
Department offering t	Department of Geology	
Academic year/level:		Second level

B - Basic information

Title:Geographic Information System (GIS)	Code:240G	Year/level: Second level
Teaching Hours:	Lectures: 2 Practical:2	Tutorial: 0 Total: 4 h/week

C - Professional information

1– Course Learning Objectives:

This course is designed to deliver a theoretical and practical understanding of how students can identify the computer-based database management system for capture, storage, retrieval, analysis, and display of spatial data. Students who complete this program will be better prepared to map data for decision-making in business, environmental protection, risk assessment, utility planning and management, emergency response, land use planning, transportation planning, delivery route planning, real estate, and crime prevention.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- al.recognize the fundamentals of GIS in geology and other geosciences,
- a2. review the basics of projection methods and layer systematics,
- a3. demonstrate the basic skills required for GIS based geological projects,
- a4. relaize the increasing need for GIS based maps and datasets.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. differentiate between different types of map projections,
- b2. determine the database elements,
- b3.demenostsate the basic and progressed techniques and methods in GIS,

b4.recognize the different environments of GIS work.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to: c1.use the software for creating data sets in a GIS environment,

- c2. analyze the components of a GIS mapping,
- c3. explore a GIS project and identify elements and their properties,
- c4. envisage the symbols and layers of a composite data set.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. collect data from sample examination and other data resources,
- d2. reproduce the results to meet the projected goals in an easy, readable final form,
- d3. collaborate and work in team smoothly adhere to ethics and manage time.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1- Introduction and course description	2	0	2
2- Mapping Data	2	0	2
3- Data Processing	2	0	2
4- Advantages of Digital Storage	2	0	2
5- Functions of Geological Information System	2	0	2
6- Components of Geological Information System	2	0	2
7- Planning for Geological Information System	2	0	2
8- ArcGIS environment	2	0	2
9- Geocoding	2	0	2
10- Working with Geodatabases	2	0	2
11-Basic Editing in ArcMap	2	0	2
12- Coordinate Systems and Map Projections	2	0	2
13- Drawing and Symbolizing Features	2	0	2
14- Revision and course evaluation/open session	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming		
e & ding	a1	recognize the fundamentals of GIS in geology and other geosciences,	\checkmark	\checkmark		\checkmark		
) wledg erstan	a2	review the basics of projection methods and layer systematics,	\checkmark	$\overline{\mathbf{A}}$	$\overline{\mathbf{v}}$		\checkmark	
Kno Und	a3	demonstrate the basic skillsrequired for GIS based geological projects,	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

	a4	relaize the increasing need for GIS based maps and datasets.	\checkmark		\checkmark			
kills	b1	differentiate between different types of map projection,						
ll Sl	b2	determine the database elements,				\checkmark		
llectua	b3	demenostsate the basic and progressed techniques and methods in GIS,	\checkmark				\checkmark	
Inte	b4	recognize the different environments of GIS work.		\checkmark				
nd kills	c1	use the software for creating data sets in a GIS environ,					\checkmark	
l aı al s	c2	analyze the component of a GIS map,						
actica ession	c3	explore a GIS project and identify elements and their properties,	\checkmark	\checkmark		\checkmark	\checkmark	
Pr prof	c4	envisage the symbols and layers of a composite data set.	\checkmark	\checkmark				\checkmark
kills	d1	collect data from sample examination and other data resources,			\checkmark			
eral Sl	d2	reproduce the results to meet the projected goals in an easy, readable final form,						
Gen	d3	collaborate and work in team smoothly adhere to ethics and manage time.					\checkmark	

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activates and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading		
Semester Work	a1-a2, a3, b1, b2, b4, and c1	Fifth week	10 %		
Mid-Term Exam	a1, a5, b3, b4.	Seventh week	6 %		
Oral exam	a2, a3, a4, a5, b5, b1, c2, c3	Thirteenth week	12 %		
Written exam	a1, a2, a3, a5, b1, b2, b4, b5,	Fourteenth week	72 %		
	c1, c2, c3, d1.				
	100 %				

-Course matrix

Contents	Knowledge and understanding			Intellectual skills			Practical and professional skills				General skills					
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course	Х						Х						х			
description																
Mapping Data		X				X					X					Х
Data Processing				X												
Advantages of Digital			Х													
Storage																
Functions of Geological				х										Х		
Information System																
Components of						Х				х						
Geological Information																
System																
Planning for Geological		Х						Х						Х		
Information System																
ArcGIS environment			X										X			
Geocoding		Х							X						Х	
Working with	Х						Х					Х		Х		
Geodatabases																
Basic Editing in ArcMap			Х			Х							Х			
Coordinate Systems and		Х								х					Х	
Map Projections																
Drawing and		Х														Х
Symbolizing Features																
Revision and course			Х											Х		
evaluation/open session																

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s)approved by the department council.

6-2 Required books.

None

6-15 Recommended books

-Geographic Information Systems and Science (by Paul A. Longley)

-A to Z GIS: An Illustrated Dictionary of Geographic Information Systems (by Tasha Wade)

-Geographic information system from start, 2007, Dr. Ahmed Saleh El Shemry.

-أساسيات نظم المعلومات الجغر افية للدكتور / وسام الدين محمد، 2008

6-16 Periodicals, Web sites, etc.

7- Facilities required for teaching and learning:

Power point presentations Data show Software Sound system to ensure the ease listening Group discussions

Course coordinator: Prof. Dr. Wael Hagag

Head of the Department:Prof. Dr. Gamal El QotDate:2022/2023

Course Specification 250 G: Principles of Geophysics

A. Affiliation								
Relevant program: B.Sc. Department offering the progra Department offering the course: Academic year/level:	in Geology m: De De Seo	y Department of Geology Department of Geology Second level						
B. Basic information								
Title: Principals of Geophysics	Code:250G	Year/level: Second level						
Teaching Hours:	Lectures: 2	Tutorial: 0						
_	Practical: 2	Total:4 h/week						

C. Professional information

1. Course Learning Objectives:

This course is designed to introduce students to principles and processes the geophysical techniques and its relationship with the other geological branches. It aims to train students on reorganization of the physical characteristics of the rocks and to introduce the geophysical applied methods and their role in solving the geological, engineering and environmental problems.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

a1.recognize the principals of Geophysics

- **a2.**relate the different geophysical solution and interpretation to geological problems.
- a3.realize differences in geophyscail methods and used techniques,
- **a4.** recognize the methods and techniques used for geophysical prospection and exploration.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** analyze the setting geophysical data and their evolution,
- **b2.** imagine and confirm new hypotheses, new problem descriptions, and new methods for analyzing data,
- b3. demonstrate the willingness to question conventional formulations of problems,
- b4. study the distribution of ores oil in the various rock assemblages,

a. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- **c1.** Apply the different methods of applied geophysics in looking for water, gas and oil,
- **c2.**design and carry out a geophysical survey or laboratory experiment and ensure that the recorded data are of the highest-possible quality,

C3. analyze the various geological and geophysical data of a potential ore body.

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** deal rationally with uncertainty and have demonstrated that they recognize that geophysical data are always incomplete and uncertain,
- **d2.** quantify the uncertainty and recognize when it is not acceptable to make decisions based on these data,
- **d3.** Demonstrate qualities that are the foundation of leadership.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction to Geophysics	2		2
2. Physical properties of rocks	2		2
3. Gravitational acceleration methods	2		2
4. Gravimeter data collection, reduction and	2		2
interpretation			
5. Geomagnetic methods	2		2
6. Interpretation of geomagnetic data	2		2
7. Seismic acquisition methods	2		2
8. Seismic processing and interpretation	2		2
9. Earthquake seismicity	2		2
10. Geoelectrical methods	2		2
11. Georadar method	2		2
12. Heat flow characteristics of the Earth; flow modeling	2		2
13. Drilling and well logging	2		2
14. General revision	2		2
Total hours	28		28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1.	recognize the principals of Geophysics,	\checkmark		\checkmark			\checkmark
lge & inding	a2.	relate the different geophysical solution and interpretation to geological problems,	\checkmark	\checkmark				
nowlec dersta	a3.	realize differences in geophyscail methods and used techniques,	\checkmark					\checkmark
Kr Un	a4.	recognize the methods and techniques used for geophysical prospection and exploration.		\checkmark		\checkmark	\checkmark	\checkmark
S	b1.	analyze the setting geophysical data and their evolution,				\checkmark	\checkmark	
tual Skill	b2.	imagine and confirm new hypotheses, new problem descriptions, and new methods for analyzing data,		\checkmark	\checkmark			\checkmark
Itellec	b3.	demonstrate the willingness to question conventional formulations of problems,				\checkmark	\checkmark	
II	b4.	study the distribution of ores oil in the various rock assemblages,	\checkmark					\checkmark
d ills	c1.	apply the different methods of applied geophysics in looking for water, gas and oil,	\checkmark				\checkmark	\checkmark
ractical and fessional sk	c2.	design and carry out a geophysical survey or laboratory experiment and ensure that the recorded data are of the highest-possible quality,	\checkmark		\checkmark		\checkmark	\checkmark
bro	c3.	analyze the various geological and geophysical data of a potential ore body.	\checkmark		\checkmark		\checkmark	\checkmark
ıl Skills	d1.	deal rationally with uncertainty and have demonstrated that they recognize that geophysical data are always incomplete and uncertain,		~	\checkmark			\checkmark
Jenera	d2.	recognize when it is not acceptable to make decisions based on these data,	\checkmark					
	d3.	demonstrate qualities that are the foundation of leadership.	\checkmark	~				\checkmark

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,

- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

Contents	Knowledge and understanding			Intellectual skills			Practical and professional skills				General skills					
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to	Х						Х						Х			
Geophysics																
Physical properties of		Х				х					х					х
rocks																
Gravitational				х												
acceleration methods																
Gravimeter data			Х													
collection, reduction and																
interpretation																
Geomagnetic methods				Х										х		
Interpretation of						х				Х						
geomagnetic data																
Seismic acquisition		Х						х						Х		
methods																
Seismic processing and			х										Х			
interpretation																
Earthquake seismicity		Х							X						X	
Geoelectrical methods	Х						Х					Х		Х		
Georadar method			Х			х							х			
Heat flow characteristics		Х								X					Х	
of the Earth; flow																
modeling																
Applications in		Х														Х
Exploration for																
Petroleum																
General revision			Х											х		

6. List of references:
6.1. Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6.2. Required books.None6.3. Recommended books

Fundamentals of Geophysics (Second edition) Sharma, P. V., 1997, Environmental & engineering geophysics, Cambridge University Press. Seismic Modeling of Geologic Structures: Applications to Exploration Problems (Geophysical Development, Vol 2) by Stuart William Fagin (Dec 1991)

6.4. Periodicals, Web sites, etc.

Austoralian geophysics AAPG (American association of petroleum geology)

7. Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinator:	Dr. Wafaa El Shahat Dr. Mohamed Salem Al Aaser
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 217Ch: Aliphatic Organic Chemistry

A. Affiliation					
Relevant program: B.Sc. in	Geology Program	n			
Department offering the program:	Department	of Geology			
Department offering the course: Department of Chemistry					
Academic year/level:	Second level				
B. Basic information					
Title: Aliphatic Organic Chemistry	Code:217Ch	Year/level: Second level			
Teaching Hours:	Lectures: 2	Tutorial: 0			
6	Practical:3	Total:5 h/week			

C. Professional information

1. Course Learning Objectives:

The objective of this course is to enable the students to understand halogenated derivatives of hydrocarbons, alcohols, ethers, amines, aliphatic aldehydes and ketones, carboxylic acid derivatives, active methylene compounds and alicyclic compounds.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- **a1.** State halogenated derivatives of hydrocarbons
- a2. List the different types of alcohols and ethers.
- a3. Describe the various classes of aliphatic amines.
 - **a4.** Illustrate the active methylene compounds.
 - **a5.** Recognize the aliphatic aldehydes and ketones.

a6. Recite alicyclic compounds, carboxylic acids and their derivatives.

b. Intellectual skills:

On successful completion of the course, the student should be able to. **b1.** Explain compounds of alcohols and ethers

- **b2.** Differentiate between alicyclic compounds, aldehydes and ketones
 - b3. Compare carboxylic acids, esters, amides and anhydrides.

b4. Distinguish the different types of active methylene compounds.

b. Practical and professional skills:

On successful completion of the course, the student should be able to:

- c1. Identify different solid organic compounds.
- **c2.** Modify the synthesis methods of organic compounds.

d. General skills:

On successful completion of the course, the student should be able to: **d1.** Solve problems on the scientific basis taught in this course. **d2.** Work in a team effectively, manage time, collaborate and communicate with others positively.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction	2		3
2. Halogenated derivatives of hydrocarbons	2		3
3. Alcohols	2		3
4. Ethers	2		3
5. Aliphatic amines	2		3
6. Aliphatic aldehydes	2		3
7. Aliphatic ketones	2		4
8. Carboxylic acids	2		4
9. Derivatives of carboxylic acids	2		4
10. Active methylene compounds	4		4
11. Alicyclic compounds	4		4
12. Revision	2		4
Total hours	28		42

Intended Learning Outcomes		Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming	
3 69	a1.	State halogenated derivatives of hydrocarbons	\checkmark					\checkmark
dge & andin	a2.	List the different types of alcohols and ethers.	\checkmark				\checkmark	
nowle nderst	a3.	Describe the various classes of aliphatic amines.	\checkmark				\checkmark	\checkmark
IU Ur	a4.	Illustrate the active methylene compounds.	\checkmark	\checkmark			\checkmark	\checkmark

	a5.	Recognize the aliphatic aldehydes and ketones.	\checkmark			\checkmark	\checkmark	\checkmark
	аб.	Recite alicyclic compounds, carboxylic acids and their derivatives.	\checkmark				\checkmark	\checkmark
ls	b1.	Explain compounds of alcohols and ethers	\checkmark		\checkmark			\checkmark
ıl Skil	b2.	Differentiate between alicyclic compounds, aldehydes and ketones	\checkmark	\checkmark			\checkmark	\checkmark
llectua	b3.	Compare carboxylic acids, esters, amides and anhydrides	\checkmark			\checkmark		\checkmark
Intel	b4.	Distinguish the different types of active methylene compounds.	\checkmark					\checkmark
ti	c1.	Identify different solid organic compounds	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Prac cal	c2.	Modify the synthesis methods of organic compounds.			\checkmark			\checkmark
eral ills	d1.	Solve problems on the scientific basis taught in this course.	\checkmark			\checkmark		\checkmark
Gen Ski	d2.	Work in a team effectively, manage time, collaborate and communicate with	\checkmark	\checkmark			\checkmark	\checkmark

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructors and proved by chemistry department.

6.2. Required books.

"Organic Chemistry for competitive examinations", ArunBahl, Penjab University, INDIA, 2009

6.3. Recommended books

None

6.4. Periodicals, Web sites, etc.

Journal of Chemical Education (ACS)

http://www.public.asu.edu/~jpbirk/CHM-115_BLB/Chpt24/ http://ocw.mit.edu/courses/chemistry/5-112-principles-of-chemical-science-fall-2005/ http://www.docbrown.info/page07/appendixtrans11.htm

7. Facilities required for teaching and learning: Using a microphone in lectures Using a black board Group Discussions Data show

Course coordinator:	Dr. Enas Abdelalim
	Dr. Amal Mohamed
Head of the Department:	Prof. Dr. Wagdy Eldougdoug
Date:	2022-2023

Course Specification 225Ph: Principals of Modern Physics

A. Affiliation					
Relevant program:	B.Sc. in Geo	ology Program			
Department offering the program:	Department of	of Geology			
Department offering the course:	Department of Physics				
Academic year/level:	Second level				
B. Basic information					
Title: Principles of Modern Physics	Code:225 Ph	Year/level: second level			
Teaching Hours:	Lectures:2	Tutorial: -			
5	Practical: 2	Total:4 h/week			

C. Professional information

1. Course Learning Objectives:

By Finishing of this course the graduate will able to

Recognize the concept of Newtonian relativity and Galilian transformation of coordinates Study postulates of special relativity and its applications in time dilation and length contraction. Illustrate black body radiation in two cases: classical and quantum concept. Illustrate photoelectric effect using classical concept and Einstein concept which agree with the experiment. Introduce the x-ray and Compton effect to discuss the concept of particle wave complementarity. Illustrate quantum Bohr model of atom which helps understanding of some spectral series for hydrogen atom and prediction to other spectral lines.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- a1. Recognize the difference between Newtonian relativity concept and Einstein relativity.
- a2. Investigate the black body radiation in two cases: classical and quantum concept.
- **a3.** Illustrate photoelectric effect using classical concept and Einstein concept which agree with the experiment.
- **a4.** Describe the x-ray and Compton effect and Uncertainty principle.

a5. Investigate the quantum Bohr model of atom to calculate spectral series for hydrogen atom.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** Exam the validity of different atomic modes.
- **b2.** Collect, summarize, and analyze the practical data.

b3. Reason in any atomic phenomena by a logic way.

b4. Interest in X-ray applications.

c. Practical and professional skills:

On successful completion of the course, the student should be able to.

c1. Collect and analyze the atomic spectra.

c2. Design the computer programs to describe the atomic spectroscopy.c3. Sketch the phase diagram for different types of materials.

d. General skills:

On successful completion of the course, the student should be able to. **d1.** Solve problems in time dilation and length contraction using Lorentz trans formations.

d2. Communicate to work efficiently in a team or separately.

d3. Collect data and wrighting reports in the different model of atom and x-rays.

No	Торіс	Lecture hours	Tutorial hours	Practical hours
1	Principles of Modern Physics	2		4
2	Black body radiation	2		2
3	Plank's law and photoelectric effect	4		3
4	Rutherford model hydrogen atom	2		2
5	Bohr and Somerfield theories	4		4
6	Compton effect	2		2
7	Mid-Term Exam	2		4
8	De proglie waves and Uncertainty Principles	4		2
9	Principle of special relativistic theory	6		5
	Total hours	28		28

3. Contents

Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
----------------------------	---------	------------------------	------------------------	-----------	-----------------	----------------

	a1.	Recognize the difference between Newtonian relativity concept and Einstein relativity.	\checkmark	\checkmark		\checkmark	
ling	a2.	Investigate the black body radiation in two cases: classical and quantum concept	\checkmark		\checkmark		\checkmark
Inderstan	a3.	Illustrate photoelectric effect using classical concept and Einstein concept which agree with the experiment	√	~	~		
lge & U	a4.	Describe the x-ray and Compton effect and Uncertainty principle	\checkmark	~		~	
a5. atom to calculate spectral series hydrogen atom		Investigate the quantum Bohr model of atom to calculate spectral series for hydrogen atom	\checkmark		\checkmark		\checkmark
kills	b1.	Exam the validity of different atomic modes.	\checkmark		\checkmark		
b2. Collect, practical		Collect, summarize, and analyze the practical data.	\checkmark	\checkmark			\checkmark
ntellec	b3.	Reason in any atomic phenomena by a logic way.	\checkmark				
IJ	b4.	Interest in X-ray applications	\checkmark				
and al	c1.	Collect and analyze the atomic spectra	\checkmark				
tical a essiona s	c2.	Design the computer programs to describe the atomic spectroscopy	\checkmark	\checkmark		\checkmark	
Prac profe skill	c3.	Sketch the phase diagram for different types of materials	\checkmark	\checkmark	\checkmark		
ls	d1.	- Solve problems in time dilation and length contraction using Lorentz trans formations	\checkmark			\checkmark	\checkmark
eral Ski	d2.	Communicate to work efficiently in a team or separately	\checkmark	\checkmark	\checkmark		
Gene	d3.	Collect data and wrighting reports in the different model of atom	\checkmark	\checkmark			\checkmark

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a4, b1, b2 and d1	Fifth week	5 %
Mid-Term Exam	a1, a2, a3, b2, d1, and d2	Seventh week	5 %
Oral exam	a1, a3, a4, b1, b3, c1, and d2	Thirteenth week	10 %
Written exam	a1, a2, a3, a4, b1, b2, b3, c1,	Fourteenth week	80 %
	d1and d2		
Total			100 %

6. List of references:

6.1. Course notes

Manual notebook

6.2. Required books.

The concepts and theories of modern physics, 2006, by John Bernhard Stallo

6.3. Recommended books.

Concepts of Modern Physics, 2008, by Arthur Beiser

Ancient and Modern Physics, 2010, by Thomas E. Willson

6.4. Periodicals, Web sites, etc. http://www. Physics2000 http://www. Physics today

7. Facilities required for teaching and learning:

Using a microphone in lectures Using a black board Group Discussions Data show

Course coordinator:

Assistant Professor Dr. Hassan Omar Associate Professor Dr. Ibrahim Almashad Head of the Department: Prof. Dr. Saeed El-Sayed Abde Ghany Date: 2022-2023

Course Specification 306-G: Field training

A- Affiliation			
Relevant program:	Geology B.Sc	z. Program	
Department offering th	e program:	Department of Geology	
Department offering th	e course:	Department of Geology	
Academic year/level:		Third level	

B - Basic information		
Title: Field training	Code:306-G	Year/level: third level
Teaching Hours:	Lectures: 0	Tutorial: 0
-	Practical: 3	Total:3 h/week

C - **Professional** information

1 – Course Learning Objectives:

The main objectives of the field course are to provide the student with the following. skills:

- Map location with pocket transit and GPS, including triangulation with topographic maps.
- Basic map location techniques with the pocket transit and topographic map (Hand-levelling, triangulation, etc.).
- > Topographic and geologic survey techniques with the pocket transit/GPS.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should be able to:

- al- know data and information from different sources about a certain topic.
- a2-identity essay or research about a given topic.
- a3-Geologic field mapping and structural analysis in a polydeformed metamorphic and igneous terranes and folded to undeformed sedimentary rocks.
- a4- Measurement of stratigraphic section and construction of stratigraphic columns with detailed description.
- a5- Construction of geologic cross-sections.

b - Intellectual skills:

On successful completion of the course, the student should be able to:

- b1- interpret logically.
- b2- solve problems.
- b3- interpret accuracy

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1- differentiate available tools to solve a problem or to collect data.
- c2- investigate certain subject.

c3- differentiate the basic units of the research including the introduction, material and methods, results, discussions, and references

d - General skills:

On successful completion of the course, the student should be able to:

- d1. Computer, internet & communications.
- d2. Management, working in group & life-long learning.
- d3. Ethical behavior, community linked thinking.
- d4- How to plan efficient use time
- d5- Use of WWW and electronic library for search

3 – Contents

Торіс	Lecture	Tutorial	Practical
1	hours	hours	hours
Geology department organize geologic field trip (10 days)	0	0	3
to one of the mountainous terrains in Egypt to train the			
student on the geologic field work and sample collecting			
and the basis of geological mapping and the student must			
introduce comprehensive geologic report about the			
different activity during the field trip and this report will			
be evaluated as practical paper.			
1. Field Equipment, and rules-, behaviour- and	0	0	3
safety in the Field			
2. Field-structural skills	0	0	3
3. Observations At Different Scales	0	0	3
4. Description of igneous/ metamorphic rocks	0	0	3
5. Differentiate between different rock types in the			
		0	2
6. Geologic structures in the field	0	0	3
7. Measuring structural elements in the field	0	0	3
8. Geologic - and structural- traverses	0	0	3
9. Interpretations based on limited data and time	0	0	3
10. Reporting measurements and observations	0	0	3
11. Geologic mapping techniques	0	0	3
12. Mineral resources in the field	0	0	3
13. Filed study in hydrology	0	0	3
14. Writing technical reports and structural history	0	0	3
Total hours	0	0	42

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
ß	a1	know data and information from different sources about a certain topic.	X	0	x	0	0	X
erstandir	a2	identity essay or research about a given topic.	X	x	0	0	0	0
vledge & Unde	a3	Geologic field mapping and structural analysis in a polydeformed metamorphic and igneous terranes and folded to undeformed sedimentary rocks.	Х	0	0	0	0	X
Knov	a4 Measurement of stratigraphic section and construction of stratigraphic columns with detailed description.		X	X	0	0	X	X
	a5	Construction of geologic cross-sections.	X					
tual Is	b1	interpret logically.	X	0	0	0	X	0
ntellec Skill	b2	solve problems.	X	0	0	0	x	X
I	b3	interpret accuracy	Х	0	0	0	Χ	0
and skills	c1	differentiate available tools to solve a problem or to collect data.	X	0	0	0	X	X
ctical sional	c2	investigate certain subject.	X	0	0	0	X	X
Pra profes	c3	differentiate the basic units of the research including the introduction, material and methods, results, discussions and references	X	0	0	0	X	X
kills	d1	Computer, internet & communications.	X	x	0	0	0	X
leral S	d2	Management, working in group & life-long learning	X	X	0	0	0	X
Gen	d3	Ethical behavior, community linked thinking.	X	X	0	0	X	X
	d4	How to plan efficient use time	X	X	0	0	X	X

d5	Use of WWW and search	electronic library for	x	0	х	0	х	Х
----	-----------------------	------------------------	---	---	---	---	---	---

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude.
- 5.2. Assignments to assess the student independent work,
- 5.3. A field trips.
- 5.4. Written mid-term exam to ensure the student progress and discover the shortage.
- 5.5. Final written and oral exam to evaluate students and promote for other consequent courses.

6- List of references:6-1 Course notesManual of Field Geology

6-2 Required books.

Davis, George H., 1984, Structural Geology of Rocks and Regions: John Wiley & Sons, Inc., New York, New York, 492p.

6-17 Recommended books

Marshak, Stephen and Mitra, Gautam, 1988, Basic methods of structural geology: Prentice Hall, Englewood Cliffs, New Jersey, 446p.

6-18 Periodicals, Web sites, etc.

www.sciencedirect.com&www.geology.com

7- Facilities required for teaching and learning:

Data show Using a blackboard Group discussions

Course coordinator:	Prof. Abdel Aziem M. Mehanna
	Asst.Prof. Moustafa M. Mogahed
Head of the Department:	Gamal El Qot
Date:	2022/2023

Course Specification 310 G: Chrono- and Chemo- Stratigraphy

A-Affiliation

Relevant program:	B.Sc. in Geology
Department offering the program:	Department of Geology
Department offering the course:	Department of Geology
Academic year/level:	Third level

B - Basic information

Title: Chrono- and Chemical	Code:310G	Year/level: third level
Stratigraphy		
Teaching Hours:	Lectures: 2	Tutorial: 0
-	Practical: 2	Total:4 h/week

C - **Professional information**

1 – Course Learning Objectives:

This course is aimed at introducing students to o introduce the morphology and evolution of fossil invertebrates. Includes discussion of ancient environments and changes in life forms with time.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should be able to:

- a1. approach Geologic Time Scale and "how it grew" including the most significant biological events of the Phanerozoic
- a3. review processes of fossilization including "what is a fossil?" with examples,
- a4. realize taxonomic and habitat classification of major invertebrate groups; phylogeny of dominant invertebrate taxa grades and clades how hydrogeology is interrelated with other natural and environmental science disciplines.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1- analyze the anatomy of stratigraphically significant invertebrate taxa,
- b2- determine chronostratigraphic distribution of dominant invertebrate groups,
- b3. Investigate Invertebrate fossils as indicators of ancient environments,
- b4. explore the major extinction events in the biologic history of Earth as evidenced in the fossil record.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1: acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,
- c2: report accurate observations and measurements,
- c3. analyze the various geological and stratigraphical issues of fossils,
- c4. carry out scientific research and evaluate and make use of the material so acquired,

d - General skills:

On successful completion of the course, the student should be able to:

- d1. work productively with others,
- d2: communicate effectively in writing,
- d3. organize and manage working time, schedule tasks, and meet deadlines,
- d4. Use computer, internet & communications.
- d5. adhere to ethical and community linked thinking

3 – Contents

Торіс	Lecture	Tutorial	Practical
1 Introduction	2	0	110u1 S
2 Evidence of interruptions of sedimentation	2	0	2
3. Stratigraphical classification	2	0	2
4. Types of lithostratigraphic units	2	0	2
5. Some important lithofacies	2	0	2
6. Biostratigraphical units	2	0	2
7. Biostratigraphy and evolution	2	0	2
8. Types of chronostratigraphical units	2	0	2
9. Magnetostratigraphy and Chemostratigraphy	2	0	2
10. Stratigraphical interpretation	2	0	2
11. Procedures to determine lithostratigraphical units	2	0	2
12. Completeness of the stratigraphical record	2	0	2
13. Limits to biostratigraphical evolution	2	0	2
14. Revision	2	0	2
Total hours	28	0	28

Intended Learning Outcomes		Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming	
Knowledge & Understanding	a1	Provide an overview of fundamental terms such as Stratigraphy in general, Lithostratigraphy,Biostratigraphy,Chronost ratigraphy, Chemostratigraphy, Magnetostratigraphy, etc	\checkmark		\checkmark			\checkmark

	a2	Review the different units of Litho, Bio and					
	93	Chronostraugraphy. Know that Lithofacies refer to:	N				
	as	Know that Entholacies refer to.	v				v
		-A mappable subdivision of a designated stratigraphic unit, distinguished from adjacent subdivisions on the basis of lithology; a facies characterized by particular lithologic features.					
		-The rock record of any particular sedimentary environment, including both physical and organic characteristics.					
	a4	Recognize the different Types of Chemical Variations in chemostratigraphy.				\checkmark	
lls	b1	Differentiate between Chemostratigraphy and Magnetostratigraphy.					
l Ski	b2	review the basics of stratigraphy and				\checkmark	
tua	1.2	paleotology in the geological fields.					
ellec	03	mineral litho and biostratigraphy.		N	Ň		N
Int	b4	differentiate between different types of lithofacies,			V		
onal	c1	recognize the variations and classification of litholgies, and fossils controlling a facies,				\checkmark	
ofessic	c2	make and record accurate observations and measurements,			\checkmark	\checkmark	\checkmark
ınd pr skills	c3	analyze the paleoenvironment using the lithostratigraphic and biostratigraphic units,			\checkmark		\checkmark
ttical <i>E</i>	c4	Use the fossils to identify formations and their depositional conditions,		\checkmark	\checkmark		\checkmark
Prac	c5	Carry out scientific research and evaluate chrono and chemical stratigraphic issues.				\checkmark	\checkmark
	d1	work productively with others,					
SI	d2	communicate effectively in writing,					
ral Ski	d3	organize and manage working time, schedule tasks, and meet deadlines,					
enel	d4	Use computer, internet & communications.					
ŭ	d5	Adhere to ethical and community linked thinking					

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ½ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

Contents	Kn	owle	dge	and	Intellectual skills			kills	I	Practio	cal ar	nd	General skills			
	un	ders	tandi	ng		r	1	1	pro	professional skills			1	1	1	
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction	Х						Х						Х			
Evidence of		х				Χ					Х					х
interruptions of																
sedimentation																
Stratigraphical				Χ												
classification																
Types of			Х													
lithostratigraphical units																
Some important				Χ										х		
lithofacies units																
Biostratigraphical units						Χ				Х						
Biostratigraphy and		Х						Х						Х		
evolution																
Types of			Х										Х			
chronostratigraphical																
units																
Magnetostratigraphy and		Х							Х						Х	
Chemostratigraphy																
Stratigraphical	Х						Х					Х		Х		
interpretation																
Procedures to determine			Х			Χ							Х			
lithostratigraphical units																
Completeness of the		Х								Х					Х	
stratigraphical record																
Limits to		Х														Х
biostratigraphical																
evolution																
Revision			Х											X		

6-List of references: Brookfield, M. E. (2008). *Principles of stratigraphy*. John Wiley & Sons.

6-1 Course notes

Lecture notes prepared by the course instructor(s) Power point presentations Manual notes handle of Hydrogeology for students.

6-2 Required books.

None

6-19 Recommended books

G. Nichols (2009) Sedimentology and Stratigraphy, 2nd edition. ISBN 978-1-4051- 3592-4 H. Levin (2010) The Earth through Time.ISBN: 978-0470-387740 Brookfield, M (2004) Principles of Stratigraphy. ISBN 1-4051-1164-X

6-20 Periodicals, Web sites, etc.

www.google.com & www.scincedirect.com

7- Facilities required for teaching and learning:

Data show & video shows Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinator:	Prof. Dr. Gamal El Qot Prof. Dr. Hassan El Sheikh
Head of the Department: Date:	Prof. Dr. Gamal El Qot Approved on 9/12/2015 (meeting number 390) and updated on 10/1/2018 (meeting number 419)

updated on 2022/2023

Course Specification 315-G: Geomorphology and Paleoecology

Relevant program: B.Sc. inGeology Department offering the program: Department offering the course: Academic year/level:

Department of Geology Department of Geology Third Level

B - Basic information

Title: Geomorphology and	Code: 315G	Year/level: Third level
Paleoecology		
Teaching Hours:	Lectures: 2	Tutorial: 0
-	Practical: 2	Total:4 h/week

C - **Professional information**

1 – Course Learning Objectives:

This course is dedicated to furnishing the student with the necessary basic information about the different geomorphological features and paleoecology. It aims to teach student how to recognize and differentiate between the different types of fossil groups in general and index fossils in particular.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

- a1. identify the paleoenvironmental controls associated with the various types of fossils, principally macrofossils
- a2. To give suitable information on paleoecology and the recognition of paleoenvironment.
- a3. To give suitable information on taphonomy and the recognition of paleoenvironment.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1- discriminate between terrestrial, aquatic, and marine fossil types,
- b2- identify fossil groups and their ecology in the geologic past.
- b3- identify microfossil groups and major palynomorph categories under the microscope.
- b4- To be able to reconstruct the paleoenvironment

c - Practical and professional skills:

On successful completion of the course, the student should be able to:

c1- Process sedimentary rock samples for their fossil palynomorph content,

- c2- Employ microfossils to provide information about the stratigraphy of their enclosing sedimentary rocks,
- c3- Utilize microfossils as a proxy to interpret the depositional paleoenvironment of rock layers,
- c4- Reconstruct the geologic history of stratified rocks based on their microfossil content.

d - General skills:

On successful completion of the course, the student should be able to:

- d1- Work with peers on small projects,
- d2- Accomplish given scientific tasks either individually, or with a group,
- d3- Make an internet and library search to prepare a report on a given class assignment,
- d4- Communicate scientific data orally to the class audience with the help of technology aids such as a PowerPoint presentation.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical bours
1. General Introduction	2	0	2
2. Slope evolution	2	0	2
3. Landscape forms	2	0	2
4. Cuestal landscapes	2	0	2
5. Landforms in tropics and cold climate	2	0	2
6. Landscape form in the Mediterranean region	2	0	2
7. Landforms in Egypt	2	0	2
8. Paleoecology as a science	2	0	2
9. Types of ancient ecologies	2	0	2
10. The fundamental principles of paleoecology	2	0	2
11. Paleosynecology	2	0	2
12. Paleoautecology.	2	0	2
13. Taphonomy; Taphonomical parameters and	2	0	2
reconstruction of the Paleoenvironment.			
14. Shell-beds and their interpretation.	2	0	2
Total hours	28	0	28

Intended Learning Outcomes	ecture	resentations & Iovies	iscussions & eminars	ractical	roblem solving	rain storming	
----------------------------	--------	--------------------------	-------------------------	----------	----------------	---------------	--

inding	a1	Be able to provide a brief account on the different types of micro fossils including palynomorphs	\checkmark					
Jndersta	a2	Be able to recognize the difference between the different microfossil groups- particularly palynomorphs		\checkmark				
edge & I	a3	Recognise the paleoenvironmental controls associated with the various types of microfossils, principally palynomorphs		\checkmark				
Knowl	a4	Realize the stratigraphic value and range of application of the major microfossil types specially palynomorphs	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
	b1	Discriminate between terrestrial, aquatic, and marine microfossil types	\checkmark			\checkmark		\checkmark
Skills	b2	Identify microfossil groups and major palynomorph categories under the microscope						
ellectual	b3	Describe the basic morphologic features of the different microfossil groups with emphsis on palynomorphs	\checkmark	\checkmark	\checkmark	\checkmark		
Int	b4	Recognize example genera and/or species of the different microfossil categories particularly palynomorphs		\checkmark		\checkmark		
lls	c1	Process sedimentary rock samples for their fossil palynomorph content		\checkmark				
ical and ional ski	c2	Employ microfossils to provide information about the stratigraphy of their enclosing sedimentary rocks	\checkmark	\checkmark			\checkmark	\checkmark
Pract ofessi	c3	Utilize microfossils as a proxy to interpret the depositional paleoenvironment of rock layers						
hr	c4	Reconstruct the geologic history of stratified rocks based on their microfossil content			\checkmark		\checkmark	\checkmark
	d1	Work with peers on small projects						
kills	d2	Accomplish given scientific tasks either individually, or with a group		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
eral S	d3	Make an internet and library search to prepare a report on a given class assignment						
Gen	d4	Communicate scientific data orally to the class audience with the help of technology aids such as a PowerPoint presentation		\checkmark	\checkmark			

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate the students and promote to other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %

Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

Contents	Kn un	owle derst	dge a tandi	and ng	Intellectual skills			kills	Practical and professional skills			General skills				
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
General Introduction	Х						X						Х			
Slope evolution		Х				Х					X					X
Landscape forms				х												
Cuestal landscapes			Х													
Landforms in tropics and				х										Х		
cold climate																
Landscape form in the						Х				Х						
Mediterranean region																
Landforms in Egypt		X						х						Х		
Paleoecology as a			Χ										Х			
science																
Types of ancient		Х							х						Х	
ecologies																
The fundamental	Х						Х					Х		Х		
principles of																
paleoecology																
Paleosynecology			X			Х							Х			
Paleoautecology.		Х								Х					Х	
Taphonomy;		Х														X
Taphonomical																
parameters and																
reconstruction of the																
Paleoenvironment.																
Shell-beds and their			Х											Х		1
interpretation.																

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor. Power point presentations

6-2 Required books.

None

6-21 Recommended books

.Text book: Palecology Author: Dood, J. R. & Stanton, R. J. Second edition 1990

6-22 Periodicals, Web sites, etc.

http://www.nhm.ac.uk/research-curation/research/projects/duxbury/database / http://www.ucl.ac.uk/GeolSci/micropal/welcome.html

7- Facilities required for teaching and learning:

- Data show
- Sound system to ensure the ease of listening
- Traditional chalk or pen board
- Microscopes
- Lab space equiped with the necessary devices and chemicals for sample processing

Course coordinators:	Prof. Refaat Osman Prof. Gamal El Qot
Head of the Department: Date:	Prof. Dr. Gamal El Qot Approved on 9/12/2015 (meeting number 390) and updated on 10/1/2018 (meeting number 419)

updated on 2022/2023

Course Specification 320-G: Marine Geology and Diagenesis

A-Affiliation

Relevant program: Geology B.Sc. Pro	Geology B.Sc. Program					
Department offering the program:	Department of Geology					
Department offering the course:	Department of Geology					
Academic year/level:	Third level					

B - Basic information

Title: Marine Geology and	Code:320-G	Year/level: third level
Diagenesis		
Teaching Hours:	Lectures:2	Tutorial: 0
-	Practical: 2	Total:4 h/week

C - **Professional information**

1 – Course Learning Objectives:

The main objectives of this course are to enable the students to identify the paleooceanographic events recorded in the ocean and sea floors, sea-level fluctuations and chemical and physical modification of marine sediments. This course aims also to study the diagenetic stages of sedimentary rocks.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should be able to:

- a1- recognize the different paleo-oceanographic events.
- a2- identify the various geomorphological submarine features.
- a3- distinguish the diagenetic aspects in silicicalstic and carbonate sedimentary rocks.
- a4- discriminate the meteoric diagenesis in the vadose and phreatic zones.
- a5- recognize the burial diagenesis.

b - Intellectual skills:

On successful completion of the course, the student should be able to:

- b1- reconstruct the paleogeographic setting on the paleo oceanic floors.
- b2- discriminate the different types of diageneses in sedimentary rocks.
- b3- identify the different types of porosity and the influence of diagenesis on the porosity and permeability of sedimentary rocks.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

c1- identify the main diagenetic features in sedimentary rocks under polarizing microscope.

- c2- differentiate the various types of porosity.
- c3- interpret the diagenetic history of a sedimentary rocks.
- c4- determine the diagenetic types which enhance rock porosity and those reduce it.

d - General skills:

On successful completion of the course, the student should be able to:

- d1- Use computer, internet & communications.
- d2- Management, working in group & life-long learning.
- d3- Ethical behavior, community linked thinking.

3 – Contents

Tonic	Lecture	Tutorial	Practical
Торк	hours	hours	hours
1- Introduction	2	0	2
2- Origin of oceanic basins	2	0	2
3- Paleo-oceanographic events	2	0	2
4- Sea-level fluctuations	2	0	2
5- Physical and chemical modifications to marine	2	0	2
sediments			
6- Mid-term exam			
7- Diagenetic reactions in the eogenetic realms	2	0	2
8- Diagenetic reactions in the mesogenetic zone	2	0	2
9- Diagenetic reactions in the telogenetic zone	2	0	2
10-Diagenesis of carbonate rocks	2	0	2
11-Regimes of carbonate diagenesis	2	0	2
12-Diagenesis in the meteoric environment	2	0	2
13-Porosity and permeability	2	0	2
14- General revision	2	0	2
Total hours	28	0	28

	Intended Learning Outcomes					Practical	Problem solving	Brain storming
& ing	a1	recognize the different paleo-oceanographic events.	Х	0	X	0	0	X
vledge rstandi	a2	identify the various geomorphological submarine features.	Х	х	0	0	0	0
Knov Under	a3	distinguish the diagenetic aspects in siliciclastic and carbonate sedimentary rocks.	X	0	0	0	0	X

	a4	discriminate the meteoric diagenesis in the vadose and phreatic zones.	Х	X	0	0	X	X
	a5	recognize the burial diagenesis.	Х					
kills	b1	reconstruct the paleogeographic setting on the paleooceanic floors.	X	0	0	0	X	0
tual S	b2	discriminate the different types of diageneses in sedimentary rocks.	X	0	0	0	x	X
Intellec	b3	identify the different types of porosity and the influence of diagenesis on the porosity and permeability of sedimentary rocks.	Х	0	0	0	X	0
and skills	c1	identify the main diagenetic features in sedimentary rocks under polarizing microscope.	X	0	0	0	X	X
al a nal	c2	differentiate the various types of porosity.	Х	0	0	0	Х	Х
Practic	c3	interpret the diagenetic history of a sedimentary rocks.	X	0	0	0	x	х
l pro	c4	determine the diagenetic types which enhance rock porosity and those reduce it.						
	d1	Use computer, internet & communications.	Х	Х	0	0	0	Х
eneral kills	$d\overline{2}$	Management, working in group & life-long learning.	Х	х	0	0	о	х
Ge S	d3	Ethical behavior, community linked thinking.	X	X	0	0	x	X

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude.
- 5.2. Assignments to assess the student independent work,
- 5.3. A field trips.
- 5.4. Written mid-term exam to ensure the student progress and discover the shortage.
- 5.5. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	ols To Measure Time schedule				
Semester Work	mester Work a1, a2, b1, b2, c1, d1 Fifth week				
Mid-Term Exam	a1, a2, b1, b2, c1	Seventh week	5 %		
Oral exam	a1, a2, a3, a4, b1, b2, c1, c2,	Thirteenth week	10 %		
	c3				
Written exam	a1, a2, a3, a4, a5, b1, b2, b3,	Fourteenth week	80 %		
	c1, c2, c3, c4.				
	Total		100 %		

-Course matrix

Contents	ŀ	Knowledge and			Inte	ellect	ual s	kills	Practical and			nd Irilla	Gei	neral sl	cills		
	_	unae	rstan	laing	_			1.0	1	pro	professional skills				10	10	-
	al	a2	a3	a4	a5	b1	b2	b3		cl	c 2	c3	c4	d1	d2	d3	
Introduction	X							Х						Х			
Origin of oceanic basins		Х			Х		х					Х					
Paleo-oceanographic				Х													
events																	
Sea-level fluctuations			х														
Physical and chemical				Х											Х		
modifications to marine																	
sediments																	
Diagenetic reactions in					Х		х				х						
the eogenetic realms																	
Diagenetic reactions in		х													Х		
the mesogenetic zone																	
Diagenetic reactions in			х											Х			
the telogenetic zone																	
Diagenesis of carbonate		Х			Х					Х						X	
rocks																	
Regimes of carbonate	х							Х					Х		Х		
diagenesis																	
Diagenesis in the			х				Х							Х			
meteoric environment																	
Porosity and		Х									Х					Х	
permeability																	

6- List of references:

6-1 Course notes

Manual notes handle of marine geology and diagenesis for students.

6-2 Required books.

6-23 Recommended books

1.Text book: Petrology of sedimentary rocks. Sam Boggs, Jr., Applied sedimentology, Selley R.C.

Periodicals, Web sites, etc.

www.sciencedirect.com&www.geology.com

7- Facilities required for teaching and learning:

Data show Using a blackboard Group discussions

Course coordinators:	Prof. Emad Sallam
Head of the Department: Date:	Prof. Gamal El-Qot Approved on 9/12/2015 (meeting number 390), updated on 10/1/2018 (meeting number 419),

last updated 2022/2023

Course Specification

325-G: Sedimentary rocks and Depositional Environments

A-Affiliation

Relevant program: Geology B.	Geology B.Sc. Program						
Department offering the program	m: Department of Geology						
Department offering the course:	Department of Geology						
Academic year/level:	Third level						

B - Basic information

Title: Sedimentary rocks and depositional environments	Code:325-G	Year/level: third level
Teaching Hours:	Lectures: 3	Tutorial: 0
	Practical: 3	Total: 6 h/week

C - Professional information

1 – Course Learning Objectives:

Sedimentary petrology is the study of sediments and sedimentary rocks. This course specifically deals with the description, classification, and origin of sediments and sedimentary rocks, and with the processes that lead to their formation. It presents and overview of the most common types of depositional environments and it examines the processes that occur from source to sink.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the post-graduate will be able to:

- a1. acquired a mechanistic understanding of the processes that affect sediment formation, transport and deposition.
- a2. use sediment facies to interpret depositional environments in marine and continental sedimentary systems.

b - Intellectual skills:

On successful completion of the course, the post-graduate will be able to:

b1. identity the concepts and techniques that are a requisite to handle sedimentological problems in the broadest sense and that are also a requisite for adequate research needed for the majority of the master thesis.

c - Practical and professional skills:

On successful completion of the course, the post-graduate will be able to:

- c1. design a research project based on sediments and sedimentary archives.
- c2. select the most appropriate techniques to analyze sediments for specific purposes, as well as combine and interpret data obtained using several independent techniques.

d - General skills:

On successful completion of the course, the graduate will be able to:

d1. work with peers on small projects,

d2. accomplish given scientific tasks either individually, or with a group,

d3. search via the internet and local libraries to prepare a report on a given subject,

d4. communicate scientific data orally to the audience with the help of technology.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction	3	0	3
2. Sedimentary rocks: gravels, breccias and conglomerates	3	0	3
3. Sandstones	3	0	3
4. Shales and argillite	3	0	3
5. Limestones	3	0	3
6. Chert	3	0	3
7. Evaporates	3	0	3
8. Sedimentary ironstone and iron formation	3	0	3
9. Sedimentary phosphate deposits	3	0	3
10. Sedimentary environments	3	0	3
11. Sedimentary facies	3	0	3
12. Sedimentary models	3	0	3
13. Reefs	3	0	3
14. Turbidites	3	0	3
Total hours	42	0	42

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
edge & tanding	a1	acquired a mechanistic understanding of the processes that affect sediment formation, transport and deposition.	X	0	X	0	0	X
Knowl	a2	use sediment facies to interpret depositional environments in marine and continental sedimentary systems.	X	X	0	0	0	0
Intelle ctual Skills	b1	identity the concepts and techniques that are a requisite to handle sedimentological problems in the broadest sense and that are	X	0	0	0	X	0

		also a requisite for adequate research needed for the majority of the master thesis.						
and nal	c1	design a research project based on sediments and sedimentary archives.	x	0	0	0	Х	x
Practical professio skills	c2	select the most appropriate techniques to analyze sediments for specific purposes, as well as combine and interpret data obtained using several independent techniques.	Х	0	0	0	X	Х
	d1	work with peers on small projects.	Х	Х	0	0	0	Х
Skills	d2	accomplish given scientific tasks either individually, or with a group.	X	X	0	0	0	X
eneral	d3	search via the internet and local libraries to prepare a report on a given subject.	х	х	0	0	х	х
J	d4	communicate scientific data orally to the audience with the help of technology	x	x	X	0	х	x

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude.
- 5.2. Assignments to assess the student independent work,
- 5.3. A field trips.
- 5.4. Written mid-term exam to ensure the student progress and discover the shortage.
- 5.5. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading		
Semester Work	Work a1, b1, c1, d1 Fifth week				
Mid-Term Exam	a1, a2, b1, c1	Seventh week	5 %		
Oral exam	a1, a2, b1, c1, c2	Thirteenth week	10 %		
Written exam	a1, a2, b1, c1, c2	Fourteenth week	80 %		
	Total		100 %		

-Course matrix

contents	Intellectual skills		n	Practical and professional skills				General skills						
	<u>a</u> 1	22	h1				c1	c2			d1	42	43	dA
Introduction	X	a2	01				C1	02			X	u2	uJ	uŦ
Sedimentary rocks:		Х					X							Х
gravels, breccias and														
conglomerates														
Sandstones			х										Х	
Shales and argillite									Х					
Limestones												Х		
Chert								Х						
Evaporates		Х										Х		

Sedimentary ironstone			Х					Х			
and iron formation											
Sedimentary phosphate		Х			Х					х	
deposits											
Sedimentary	Х								х		
environments											
Sedimentary facies					Х			Х			
Sedimentary models		Х	Х			Х				Х	
Reefs		X									X
Turbidites			X						Х		Х

6- List of references:

6-1 Course notes

Manual notes handle of sedimentary rocks and depostional systems for students.

6-2 Required books.

none

6-24 Recommended books

1.Text book: Sedimentary Petrology: An Introduction. M. Tucker

6-25 Periodicals, Web sites, etc.

www.sciencedirect.com&www.geology.com

7- Facilities required for teaching and learning:

Data show; Using a blackboard; Group discussions

Course coordinators:	Prof. Emad Sallam
Head of the Department: Date:	Prof. Gamal El-Qot Approved on 9/12/2015 (meeting number 390), updated on 10/1/2018 (meeting number 419),

last updated in 2022/2023

Course Specification 333 G: Igneous Petrology

A. Affiliation		
Relevant program: Geolo	gy B.Sc. Program	
Department offering the program	n: Departme	ent of Geology
Department offering the course:	Departme	ent of Geology
Academic year/level:	Third Lev	vel
B. Basic information		
Title: Igneous Petrology	Code:333G	Year/level: Third level

Lectures: 2

Practical:2

C. Professional information

Teaching Hours:

1. Course Learning Objectives:

This course aims to provide students with a thorough understanding of the nature and origin of igneous rocks, from their formation and distribution to their volcanic expressions and association with particular plate tectonic settings and to what extent these features have remained the same or changed with time during the geological history of the Earth. The course also builds on fundamental concepts of geochemistry and mineralogy to explain formation of primary igneous ore bodies. Integral practical classes will use both hand specimens and optical mineralogy to understand diagnostic textures - which are used to identify and classify igneous rocks.

Tutorial: 0

Total:4 h/week

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- a1. review the origin of magma and magmatic evolution,
- a2. recognize the magmatic minerals and their paragenesis,
- **a3.** demonstrate the optical characteristics to identify mineral components of igneous rocks and their genesis,
- **a4.** identify the geotectonic environment of the different types of igneous rocks.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** assess the concepts, principles, procedures, theories and their interrelationships for interpreting the unique properties and characteristics of igneous rocks and connecting them to economic uses,
- **b2.** deduce appropriate judgments and procedures to handle scientific problems in igneous rocks and rocks identification and exploitation,
- **b3.** provide a petrographic description of igneous rocks, their mineral compositions and textures,
- **b4.** describe the tectonic settings in which igneous rocks occur including a preliminary assessment of volcanic hazard.

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

- **c1.** list the different geochronological techniques and their applications and igneous processes,
- **c2.**explain how absolute pressure-temperature information is extracted from rock using thermodynamic expressions,
- c3.realize the key factors that govern the diversity of igneous rock compositions,
- **c4.**demonstrate how the occurrence and character of different igneous rock suites is governed by and reflects the Earth's tectonic .

d. General skills:

On successful completion of the course, the student should be able to:

d1. work with peers on small projects,

- **d2.** accomplish given scientific tasks either individually, or with a group,
- d3. conduct internet and library search to prepare a report on a given class assignment,
- **d4.**communicate scientific data orally to the class audience with the help of technology aids such as a PowerPoint presentation.

3. Contents

Topic	Lecture	Tutorial	Practical
	hours	hours	hours
1. General Introduction	2		2
2. Classification of Igneous rocks	2		2
3. Formation of igneous rocks	2		2
4. Plutonism and volcanism	2		2
5. Melting and crystallization	2		2
6. How to study igneous rocks	2		2
7. Geochemistry of igneous rocks	2		2
8. Isotope geochemistry of igneous rocks	2		2
9. Origin and diversification of magmas.	2		2
10. Igneous structures and field relationships	2		2
11. Aqueous solutions at different temperatures.	2		2
12. The Arabian Shield and the main igneous rocks	2		2
13. Igneous structures and environments	2		2
14. Revision and feedback	2		2
Total hours	28		28

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
b 0	a1.	review the origin of magma and magmatic evolution,	\checkmark	\checkmark				
lge & nding	a2.	recognize the magmatic minerals and their paragenesis,	\checkmark			\checkmark	\checkmark	\checkmark
Knowled Understa	a3.	demonstrate the optical characteristics to identify mineral components of igneous rocks and their genesis,	~				\checkmark	
	a4.	identify the geotectonic environment of the different types of igneous rocks.	\checkmark				\checkmark	
S	b1.	assess the concepts, principles, procedures, theories and their interrelationships for interpreting the unique properties and characteristics of igneous rocks and connecting them to economic uses,				\checkmark		
lectual Skill	b2.	deduce appropriate judgments and procedures to handle scientific problems in igneous rocks and rocks identification and exploitation,					\checkmark	
Intel	b3.	provide a petrographic description of igneous rocks, their mineral compositions and textures	\checkmark		~			\checkmark
	b4.	describe the tectonic settings in which igneous rocks occur including a preliminary assessment of volcanic hazard.						
ional	c1.	list the different geochronological techniques and their applications and igneous processes,		\checkmark		\checkmark	\checkmark	
l profess ills	c2.	explain how absolute pressure-temperature information is extracted from rock using thermodynamic expressions,		\checkmark		\checkmark		
ıl and ski	c3.	realize the key factors that govern the diversity of igneous rock compositions,	\checkmark	\checkmark		\checkmark		
Practica	c4.	demonstrate how the occurrence and character of different igneous rock suites is governed by and reflects the Earth's tectonic				\checkmark		
ne ll lls	d1.	work with peers on small projects				\checkmark	\checkmark	\checkmark
Ge ra Ski	d2.	accomplish given scientific tasks either individually, or with a group				\checkmark		

d3.	conduct internet and library search to prepare a report on a given class assignment			\checkmark	\checkmark	
d4.	communicate scientific data orally to the class audience with the help of technology aids such as a PowerPoint presentation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exam to evaluate the students and promote to other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %
-Course matrix

contents	Kn un	owle derst	dge a tandi	and ng	Inte	ellect	ual s	kills	F pro	Practical and rofessional skills		General skills				
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
General Introduction	Х						Х						Х			
Classification of Igneous		Х				Х					х					Х
rocks																
Formation of igneous				Х												
rocks																
Plutonism and volcanism			Х													
Melting and crystallization				Х										Х		
How to study igneous rocks						X				X						
Geochemistry of igneous rocks		X						X						Х		
Isotope geochemistry of igneous rocks			X										Х			
Origin and		Х							Х						Х	
diversification of																
magmas.																
Igneous structures and field relationships	X						X					Х		Х		
Aqueous solutions at			Х			Х							Х			
different temperatures.																
The Arabian Shield and		Х								Х					Х	
the main igneous rocks																
Igneous structures and		X														Х
environments																
Revision and feedback			Х											Х		

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor. Power point presentations

6.2. Required books.

None

6.3. Recommended books

6.4. Periodicals, Web sites, etc.

http://www.nhm.ac.uk/research-curation/research/projects/duxbury/database / http://www.ucl.ac.uk/GeolSci/micropal/welcome.html

7. Facilities required for teaching and learning:

- Data show
- Sound system to ensure the ease of listeningTraditional chalk or pen board
- Microscopes
- Lab space equiped with the necessary devices and chemicals for sample processing

Course coordinator:	Asst.Prof. Abdelazim Rashwan Assis Prof. Moustafa Mogahed
Head of the Department	Drof Comol El Oot

Head of the Department Date:

Prof. Gamal El Qot 2022/2023

Course Specification 336 G: Egyptian Basement Rocks

A. Affiliation	
Relevant program: B. Sc.in Ge	ology Program
Department offering the program:	Department of Geology
Department offering the course:	Department of Geology
Academic year/level:	Third level
B. Basic information	

Title: Egyptian Basement Rocks	Code:336G	Year/level: Third level
Teaching Hours:	Lectures: 2	Tutorial: 0
-	Practical: 2	Total:4 h/week

C. Professional information

1. Course Learning Objectives:

This course is dedicated to furnishing the student with the understanding how the basement complex formed, the classification and lithologic units of the Egyptian basement. In addition, students will be getting familiar with description of the rock units constituting the basement complex of the Eastern Desert and Sinai.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- **a1.**identify basics terminology, nomenclature, concepts, theories, laws and classification systems used in the basement rocks,
- a2. define methods of interpreting and analyzing basement rocks information,
- a3. recognize importance of the basement rocks to economic and environmental issues,
- **a4.** realize the application of basement rocks to the industrial field and others.

B. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** analyze rock units encountered in any given area of the basement rocks of Egypt,
- **b2.** analyze the stratigraphic units in any sedimentary succession in the Egyptian territory,
- **b3.** arrange a stratigraphic correlation in different parts of Egypt.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- **c1.** assess the geological events that govern the arrangement and stacking of the different stratigraphic units in Egypt,
- **c2.** emphasize the age assignment and general geological history of any given stratigraphic succession in Egypt,

c3. deduce a regional and global correlation between the rock units of Egypt and the surrounding countries.

d. General skills:

On successful completion of the course, the student should be able to:

- d1.develop core skills
- **d2.**provide opportunities for independent and cooperative learning procedures with supporting argument.

3. Contents

Торіс	Lecture	Tutorial	Practical
	hours	hours	hours
1. Introduction and course details	2		2
2. Historical review	2		2
3. Classification of the basement complex in Egypt	2		2
4. Stratigraphic and tectonic units	2		2
5. Rock assemblages along plate boundaries	2		2
6. Application of plate tectonic theory	2		2
7. History of magmatic activities	2		2
8. Tectonic evolution	2		2
9. Detailed description of units of the basement complex	2		2
10. Volcanicity and volcanic rocks	2		2
11. Ophiolitic rocks, gabbroic rocks, and granitoid rocks.	2		2
12. Specimens & thin sections identifications	2		2
13. Mineral deposits associated with basement rocks	2		2
14. Revision and feedback	2		2
Total hours	28		28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
a 8	a1.	Identify basics terminology, nomenclature, concepts, theories, laws and classification systems used in the basement rocks.,	\checkmark	\checkmark				
edge <i>k</i> tandir	a2.	Define methods of interpreting and analyzing basement rocks information.	\checkmark			\checkmark	\checkmark	~
Knowle Underst	a3.	Recognize importance of the basement rocks to economic and environmental issues.	\checkmark				~	
	a4.	Write applicability of basement rocks to the industrial field and others.	\checkmark				\checkmark	
kills	b1.	analyze rock units encountered in any given area of the basement rocks of Egypt.				\checkmark		
lectual S	b2.	analyze the stratigraphic units in any sedimentary succession in the Egyptian territory.					\checkmark	
Intel	b3.	arrange a stratigraphic correlation in different parts of Egypt.	\checkmark		\checkmark			\checkmark
nd skills	c1.	assess the geological events that govern the arrangement and stacking of the different stratigraphic units in Egypt.						
actical a essional s	c2.	emphasize the age assignment and general geological history of any given stratigraphic succession in Egypt.		\checkmark		\checkmark	\checkmark	
Pr profé	c3.	deduce a regional and global correlation between the rock units of Egypt and the surrounding countries		\checkmark		\checkmark		
al	d1.	Developing core skills	\checkmark	\checkmark		\checkmark		
Gener Skills	d2.	Providing opportunities for independent and cooperative learning procedures with supporting argument.				\checkmark		

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- **5.3.** Written mid-term exam to ensure the student progress and discover the shortage,

5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn un	owle	dge a tandi	and ng	Inte	ellect	ual s	kills	Practical and professional skills		General skills					
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course	X						X						X			
details																
Historical review		Х				X					X					х
Classification of the				Х												
basement complex in																
Egypt																
Stratigraphic and			Х													
tectonic units																
Rock assemblages along				Х										Х		
plate boundaries																
Application of plate						Χ				х						
tectonic theory																
History of magmatic		Х						х						Х		
activities																
Tectonic evolution			х										Х			
Detailed description of		Х							х						х	
units of the basement																
complex																
Volcanicity and volcanic	Х						Х					X		Х		
rocks																
Ophiolitic rocks,			х			Χ							Х			
gabbroic rocks, and																
granitoid rocks.																
Specimens & thin		Х								Х					Х	
sections identifications																
Mineral deposits		Х														Х
associated with																
basement rocks																
Revision and feedback			Х											х		

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6.2. Required books.

None

6.3. Recommended books

Text Book: Petrology: Igneous, Sedimentary, and Metamorphic Author: Harvey Blatt, Robert Tracy, and Brent Owens Publisher: W. H. Freeman; 3rd edition (November 11, 2005), 530 pages

6.4. Periodicals, Web sites, etc. Geotectonics <u>http://www.springer.com/earth+sciences+and+geography/geology/journal/11479</u> <u>http://www.platetectonics.com/book/</u>

7. Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening PCs and software Electronic library

Course coordinators:	Asst.Prof. Abdel Aziem Ahmed Rashwan Asst.Prof. Moustafa M. Mogahed
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 337 G: Metamorphic Petrology

Relevant program: B. Sc Department offering the progra	c.in GeologyProgram
Department offering the progra	
	am: Department of Geology
Department offering the course	e: Department of Geology
Academic year/level:	Third Level

B. Basic information

Title: Metamorphic Petrology	Code: 337G
Teaching Hours:	Lectures: 2
	Practical:2

Year/level: Third level Tutorial: 0 Total:4 h/week

C. Professional information

1. Course Learning Objectives:

This Course is dedicated to furnishing the student with the necessary basic information about the 1) classification and identification of metamorphic rocks, 2) genesis of metamorphic rocks, 3) phase diagrams in metamorphic petrology, and 4) melting and crystallization.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- a1.provide a brief account on the different types of metamorphic rocks,
- a2. recognize the difference between the different metamorphic rocks,
- **a3.**identify the pressure temperature controls associated with the various types of metamorphic rocks,
- **a4.** realize the stratigraphic value and range of application of the major metamorphic types.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** Initiate cognitive skill to generate the abilities of identifying the physical properties of metamorphic rocks, facies, and minerals,
- **b2.** deal with optic characteristics to identify, interpret the mineral. bearing of the rocks, and analysing its genesis,
- **b3.**describe the basic morphologic features of the different metamorphic groups with emphsis on palynomorphs,
- **b4.**Develop the ability to make detailed maps in areas of metamorphic terrains.

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

- c1. Process metamorphic rock samples for their fossil palynomorph content,
- **c2.**Employ metamorphics to provide information about the stratigraphy of their enclosing metamorphic rocks,
- **c3.**Utilize metamorphics as a proxy to interpret the formation conditions of rock types,
- **c4.**Reconstruct the geologic history of deformed rocks based on their metamorphic content.

d. General skills:

On successful completion of the course, the student should be able to:

- d1. Work with peers on small projects,
- d2. Accomplish given scientific tasks either individually, or with a group,
- **d3.** Make an internet and library search to prepare a report on a given class assignment,
- **d4.** Communicate scientific data orally to the class audience with the help of technology aids such as a PowerPoint presentation.

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. General Introduction	2		2
2. Classification of metamorphic rocks	2		2
3. Formation of metamorphic rocks	2		2
4. Plutonism and volcanism	2		2
5. Melting and crystallization	2		2
6. How to study metamorphic rocks	2		2
7. Geochemistry of metamorphic rocks	2		2
8. Isotope geochemistry of metamorphic rocks	2		2
9. Different types of Metamorphism	2		2
10. Metamorphic Reaction	2		2
11. Metamorphic Facies	2		2
12. Metamorphism and Mineralization	2		2
13. Metamorphic structures and environments	2		2
14. Revision and feedback	2		2
Total hours	28		28

4 - Teaching and Learning methods:

Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	
----------------------------	---------	---------------------------	---------------------------	-----------	-----------------	--

-	a1.	Be able to provide a brief account on the						
ing		different types of micro fossils including	\checkmark	\checkmark				
pu		palynomorphs						
sta	a2.	Be able to recognize the difference						
der		between the different metamorphic groups-	\checkmark	\checkmark	\checkmark	\checkmark		
Un		particularly palynomorphs						
8	a3.	identity the paleoenvironmental controls						
ge		associated with the various types of	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
led		metamorphics, principally palynomorphs						
MO	a4.	Realize the stratigraphic value and range of						
Kn		application of the major metamorphic	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
		types specially palynomorphs						
	b1.	Initiate cognitive skill to generate the						
		abilities of identifying the physical	\checkmark	\checkmark		\checkmark		\checkmark
s		properties of metamorphic rocks, facies,						
kill		and minerals,						
I SI	b2.	deal with optic characteristics to identify,				/		
ua		interpret the mineral- bearing of the rocks,		\checkmark		\checkmark		
lect	1.0	and analyzing its genesis,						
ltell	b3.	describe the basic morphologic features of			/	/		
In		the different metamorphic groups with	v	V	V	V		
	1.4	emphsis on palynomorphs,						
	b4.	Develop the ability to make detailed maps		\checkmark		\checkmark		
	1	In areas of metamorphic terrains.						
al	c1.	Process metamorphic rock samples for	\checkmark	\checkmark		\checkmark		
ion	2	Employ metamorphics to provide						
ess	C2.	information about the stratigraphy of their	\checkmark	\checkmark			\checkmark	\checkmark
rof		enclosing metamorphic rocks	•	•			•	·
l p ills	c3	Utilize metamorphics as a provy to						
and sk	C 5.	interpret the depositional	\checkmark	\checkmark			\checkmark	\checkmark
al :		paleoenvironment of rock layers						
ctic	c4.	Reconstruct the geologic history of						
rac	•	stratified rocks based on their metamorphic			\checkmark		\checkmark	\checkmark
Р		content						
	d1.	Work with peers on small projects		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	d2.	Accomplish given scientific tasks either			1	1		/
lls	•	individually, or with a group		\checkmark	\checkmark	\checkmark	✓	\checkmark
Ski	d3.	Make an internet and library search to						
al		prepare a report on a given class		\checkmark	\checkmark	\checkmark	\checkmark	
neı		assignment						
Ge	d4.	Communicate scientific data orally to the						
-		class audience with the help of technology		\checkmark	\checkmark			
		aids such as a PowerPoint presentation						

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,

5.3. Written mid-term exam to ensure the student progress and discover the shortage,

5.4. Final written	and oral e	exam to e	evaluate	the students	and	promote to	other	consequent
courses								

courses.			
Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, a4, b1, b2, b3, b4, c1, d1, d2, d3, and d4	Whole semester	5 %
Mid-Term Exam	a1, a2, a3, a4, b3, and b4	Seventh week	5 %
Oral exam	a1, a2, a3, and a4	Thirteenth week	10 %
Practical exam	b2, b3, and b4	Thirteenth week	20
Written exam	a1, a2, a3, a4, and b3	Fourteenth week	60 %
	Total		100 %

-Course matrix

contents	Kn	owle	dge a	and	Inte	ellect	ual s	kills	Practical and			Ger	neral sl	cills		
	un	ders	tandi	ng					professional skills			kills				
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
General Introduction	X						X						X			
Classification of		х				х					Х					х
metamorphic rocks																
Formation of				х												
metamorphic rocks																
Plutonism and volcanism			Х													
Melting and				Х										Х		
crystallization																
How to study						х				х						
metamorphic rocks																
Geochemistry of		Х						Х						Х		
metamorphic rocks																
Isotope geochemistry of			х										Х			
metamorphic rocks																
Different types of		х							х						Х	
Metamorphism																
Metamorphic Reaction	Х						Х					Х		х		
Metamorphic Facies			Х			х							Х			
Metamorphism and		Х								Х					X	
Mineralization																
Metamorphic structures		Х														X
and environments																
Revision and feedback			X											X		

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor.

Power point presentations

6.2. Required books.

None

6.3. Recommended books

None

6.4. Periodicals, Web sites, etc.

http://www.nhm.ac.uk/research-curation/research/projects/duxbury/database / http://www.ucl.ac.uk/GeolSci/micropal/welcome.html

7. Facilities required for teaching and learning:

- Data show

- Sound system to ensure the ease of listening
- Traditional chalk or pen board
- Microscopes
- Lab space equiped with the necessary devices and chemicals for sample processing

Course coordinator:	Asst.Prof. Abdel Aziem M. Mehanna
	Asst.Prof. Moustafa M. Mogahed
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 340 G: Rock Mechanics and Structural Geology

A-Affiliation

Relevant program: Geology B.Sc. Progr	Geology B.Sc. Program							
Department offering the program:	Department of Geology							
Department offering the course:	Department of Geology							
Academic year/level:	Third level							

B - Basic information

Title: Rock Mechanics and	Code:340 G	Year/level: Third level
Structural Geology		
Teaching Hours:	Lectures:3	Tutorial: 0
_	Practical: 2	Total: 5 h/week

C - **Professional information**

1 – Course Learning Objectives:

This course is dedicated to introducing students to concepts and geological applications of rock deformation. It also aims to familiarize students with the fundamentals of both the structural geology and rock mechanics. In this course, students will be encouraged to use available field-structural data in deciphering structural history of an area.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1.study the geologic structures and rock properties,
- a2. recognize non-tectonic- and tectonic-structures, and different failure mechanisms,
- a3. demonstrate the geometric and kinematic relationships of geologic structures,
- a4. analyze the collected structural data from planar and linear structures,
- a5. decide the suitable method/criterion to determine/estimate the deformation and failure behaviour of the rock.

b - Intellectual skills:

- On successful completion of the course, the student should be able to.
 - b1. differentiate between ductile and brittle structures,
 - b2. use overprinting relations in unraveling the polyphase deformation,
 - b3.demenostsate the basic and progressed techniques in structural mapping,
 - b4.recognize the characterisitic features of various kinds of structural fabrics.
 - b5. relate software and hardware in structural analysis.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. interpret structural history of an area,
- c2. analyze the directional data,
- c3. use the different software and apply methods to polyphase deformation history,
- c4. read geologic and structural maps.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. collect data from textbooks and other resources,
- d2. transfer the projected goals to findings using available data and software and formulate the results in an easily readable final form,
- d3. cooperate and work in team smoothly while managing the time and go to point and targeted goals.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction to rock mechanics	3	0	2
2. Failure mechanisms of rocks	3	0	2
3. Non-tectonic structures	3	0	2
4. Rock behavior and deformation	3	0	2
5. Rock response to stress	3	0	2
6. Strain (plastic deformation) and strain markers	3	0	2
7. Measuring rock deformation	3	0	2
8. Folding and plastic deformation	3	0	2
9. Folding mechanisms (Buckling and bending)	3	0	2
10. Fracturing and brittle deformation	3	0	2
11. Anderson Faulting Theory	3	0	2
12. Faults and fault mechanisms	3	0	2
13. Shear zones	3	0	2
14. Stress and strain regimes	3	0	2
Total hours	42	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
K no wl	a1	study the geologic structures and rock properties,	х	0	х	0	0	х

	a2	recognize non-tectonic- and tectonic- structures, and different failure mechanisms,	х	0	0	x	0	0
	a3	demonstrate the geometric and kinematic relationships of geologic structures,	х	0	0	x	0	x
	a4	analyze the collected structural data from planar and linear structures,	х	х	0	X	X	X
	a5	decide the suitable method/criterion to determine/estimate the deformation and failure behavior of the rock.	х	0	х	0	0	X
	b1	differentiate between ductile and brittle structures	х	0	0	0	X	0
Skills	b2	use overprinting relations in unraveling the polyphase deformation	X	0	0	x	X	0
ectual	b3	demonstrate the basic and progressed techniques in structural mapping	х	х	х	x	X	0
Intell	b4	recognize the characteristic features of various kinds of structural fabrics	х	0	0	x	X	0
	b5	relate software and hardware in structural analysis	х	0	0	X	0	0
lı	c1	interpret structural history of an area,	х	0	Х	х	Х	х
ical 1 iona	c2	analyze directional data,	0	0	Х	Х	Х	0
Pract and rofess	c3	use the different software and apply methods to polyphase deformation history,	0	0	0	х	Х	х
ď	c4	read a geologic and structural map.	0	0	Х	X	Χ	0
S	d1	collect data from textbooks and other resources,	х	х	0	0	0	x
eral Skill	d2	transfer the projected goals to findings using available data and software and formula the results in an easily readable final form,	х	х	0	0	0	х
Gen	D3	cooperate and work in team smoothly while managing the time, and go to point and targeted goals	х	х	0	0	x	x

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class participation and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	ToolsTo MeasureTime schedule			
Semester Work	a1, a2, a3, b2, and d1	Fifth week	10 %	
Mid-Term Exam	a1, a5, b3, b4.	Seventh week	10 %	
Oral exam	a2, a3, a4, a5, b5, b1, c2, c3	Thirteenth week	10 %	
Written exam	a1, a2, a3, a5, b1, b2, b4, b5,	Fourteenth week	70 %	
	c1, c2, c3, d1.			
	100 %			

-Course matrix

Contents	Kn un	owle derst	dge a tandi	and ng	Intellectual skills			Practical and professional skills			nd kills	General skills				
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to rock mechanics	X						X						X			
Failure mechanisms of rocks		X				X					X					X
Non-tectonic structures				Х												
Rock behavior and deformation			X													
Rock response to stress				Х										Х		
Strain (plastic deformation) and strain markers						х				Х						
Measuring rock deformation		X						X						Х		
Folding and plastic deformation			X										X			
Folding mechanisms (Buckling and bending)		X							Х						Х	
Fracturing and brittle deformation	X						Х					Х		Х		
Anderson Faulting Theory			X			X							x			
Faults and fault mechanisms		X								X					X	
Shear zones		X														Х
Stress and strain regimes			X											X		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6-2 Required books.

None

6-3 Recommended books

-Fossen, H. (2010) Structural geology. Cambridge University Press, London.

-Rock mechanics on a geological base, R. Pusch, Elsevier.

-Structural geology of rocks and regions, G. Davis and S. Reynolds.

6-4 Periodicals, Web sites, etc.

Journal of Structural Geology

Egyptian Journal of Geology

http://gdex.cr.usgs.gov/gdex/

Hamimi, Z. (2006) Principles of structural geology (Arabic Edition). Hebet El-Nil El-Arabiya, Cairo.

7- Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a white board Group discussions Course coordinator(s): Prof. Maher El-Amawy

Head of the Department: Date:

Prof. Zakaria Hamimi Prof. Gamal El Qot 2022/2023

Course Specification 345 G: Principles of Structural Geology

A-Affiliation

Relevant program:	B.Sc. in Geology	
Department offering the p Department offering the c	orogram: ourse:	Department of Geology Department of Geology
Academic year/level:		Tilliu level

B - Basic information

Title: Principals of Structural	Code: G 345	Year/level: Third level
Geology		
Teaching Hours:	Lectures: 2	Tutorial: 0
-	Practical: 2	Total:4 h/week

C - Professional information

1 – Course Learning Objectives:

This course is designed to introduce students to concepts of rock deformation, familiarize students with the fundamentals of structural geology, and to encourage the use of non-tectonic primary structures in determining facing (younging direction) and tectonic secondary structures in structural analysis.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1. study the various kinds of geologic structures,
- a2. recognize primary igneous and sedimentary structures at outcrop-scale.
- a3. demonstrate the importance of geologic structures in geologic studies
- a4. analyze the collected oriented data,
- a5. decide the relation of minor structures to major structures,

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. differentiate between undeformed and deformed lithologies,
- b2. use the geologic structures in deducting geologic history
- b3. demonstrate the map-patterns of geologic structures,
- b4. recognize the overprinting relations between successive structures
- b5. relate structural fabrics to deformation episodes

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. interpret structural maps
- c2. analyze the orientational structural data,

- c3. use the different software to plot attitudes of planar and linear structures.
- c4. contribute in developing the available techniques, software and sensors.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. collect data and observations from geologic structures,
- d2. transfer the projected goals to findings using available data and software and formula the results in an easily readable final form,
- d3. cooperate and work in team smoothly while managing the time and go to point and targeted goals.

3 – Content

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and course description	2	0	2
2. Classification of geologic structures	2	0	2
3. Primary sedimentary structures	2	0	2
4. Primary igneous structures	2	0	2
5. Diapiric structures	2	0	2
6. Impact structures	2	0	2
7. Intrusive and Extrusive Structures	2	0	2
8. Gravity-controlled structures	2	0	2
9. Folding and folding mechanisms	2	0	2
10. Map View of Non-plunging- and Plunging-folds	2	0	2
11. Foliations and lineation	2	0	2
12. Fractures	2	0	2
13. Field criteria of faulting	2	0	2
14. Revision and feedback	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
je & ding	a1	study the various kinds of geologic structures,	X	0	0	X	0	x
owledg erstan	a2	recognize primary igneous and sedimentary structures at outcrop-scale	Х	х	0	X	0	0
Kne Und	a3	demonstrate the importance of geologic structures in geologic studies	X	x	0	X	0	X

	a4	analyze the collected oriented data,	х	0	0	Х	Х	Х
	a5	decide the relation of minor structures to major structures,	х	0	0	X	0	0
	b1	differentiate between undeformed and deformed lithologies,	X	0	0	X	0	0
Skills	b2	use the geologic structures in deducting geologic history	X	X	0	0	X	X
ectual	b3	demonstrate the map-patterns of geologic structures,	0	0	0	X	X	0
Intell	b4	recognize the overprinting relations between structural successions	х	0	0	X	X	X
	b5	relate structural fabrics to deformation episodes	Х	0	0	X	0	X
	c1	interpret structural maps	0	0	0	Х	Х	Х
and	c2	analyze the orientational structural data,	0	0	0	Х	0	Х
ctical fessio skills	c3	use the different software to plot attitudes of planar and linear structures.	х	0	0	х	х	0
Pra pro	c4	contribute to developing the available techniques, software and sensors.	х	0	0	X	X	0
s	d1	collect data and observations from geologic structures,	Х	X	0	Х	0	0
eral Skill	d2	transfer the projected goals to findings using available data and software and formula the results in an easily readable final form,	X	X	0	0	0	Х
Gen	D3	cooperate and work in team smoothly while managing the time and go to point and targeted goals.	X	X	0	0	X	X

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, b2, and d1	Fifth week	5 %
Mid-Term Exam	a1, a5, b3, b4.	Seventh week	5 %
Oral exam	a2, a3, a4, a5, b5, b1, c2, c3	Thirteenth week	10 %
Written exam	a1, a2, a3, a5, b1, b2, b4, b5,	Fourteenth week	80 %
	c1, c2, c3, d1.		
	100 %		

-Course matrix

contents	Kn	owle	dge	and	Inte	ellect	ual s	kills	I	Practio	cal ar	nd	Ger	neral sl	kills	
	un	ders	tandi	ng				pro	professional skills						-	
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course	Х						Х						Х			
description																
Classification of		Х				Х					Х					х
geologic structures																
Primary sedimentary				Х												
structures																
Primary igneous			Х													
structures																
Diapiric structures				X										X		
Impact structures						Х				х						
Intrusive and Extrusive		Х						х						X		
Structures																
Gravity-controlled			Х										Х			
structures																
Folding and folding		Х							х						х	
mechanisms																
Map View of Non-	Х						Х					Х		Х		
plunging- and Plunging-																
folds																
Foliations and lineation			Х			Х							Х			
Fractures		Х								Х					х	
Field criteria of faulting		Х														X
Revision and feedback			Х											X		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6-2 Required books.

None **6-3 Recommended books** -Park, R.G. (2005) Foundations of structural geology. Blackie & Son Limited, Chapman and Hall, New York. - Structural geology of rocks and regions, G. Davis and S. Reynolds. **6-4 Periodicals, Web sites, etc.** Journal of Structural Geology Open Journal of Geology and Tectonics

Egyptian Journal of Geology

7- Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a whiteboard Group discussions

Course coordinator(s):	Prof. Zakaria Hamimi
	Prof. Wael Hagag
Head of the Department:	Prof. Gamal El Qot
Date:	2022/2023

Course Specification 365 G: Hydrogeology

A- Affiliation										
Relevant program:	B.Sc. in	B.Sc. in Geology								
Department offering the pr Department offering the co Academic year/level:	ogram: urse:	Departr Departr Third le	nent of Geology nent of Geology evel							
B - Basic information										
Title: Hydrogeology	Co	de:365G	Year/level: third level							

Lectures: 2 Practical:2

C - **Professional** information

Teaching Hours:

1 – Course Learning Objectives:

This course is designed to master fundamental qualitative and quantitative principles of hydrogeology, and to define locations of hydrogeologic data and how to use them in hydrologic investigations. The students should therefore be able to assess how hydrogeology is interrelated with other natural and environmental science disciplines.

Tutorial: 0

Total:4 h/week

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1. approach and solve basic problems in the field of hydrogeology,
- a2. explore locations of hydrogeology data and how to use them in hydrologic investigations,
- a3. realize how hydrogeology is interrelated with other natural and environmental science disciplines,
- a4. recognize the methods and techniques used in interpetation of the hydrogeology data.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. Investigate the distribution undergroundwater.
- b2. analyze hydrologic processes, particularly the processes of precipitation, evaporation, infiltration, and runoff.
- b3. explore methods of hydrologic analysis, including aquifer types, groundwater movement, pumping tests and determination of aquifer hydraulic properties, well design.
- b4. envisage methods of hydrologic design, including design of flow chart.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

c1. acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,

- c2. report accurate observations and measurements,
- c3. analyze the various geological and structural issues of aquifers,
- c4. carry out scientific research and evaluate and make use of the material so acquired,

d - General skills:

On successful completion of the course, the student should be able to:

- d1. work productively with others,
- d2. communicate effectively in writing,
- d3. organize and manage working time, schedule tasks, and meet deadlines,
- d4. Use computer, internet & communications.
- d5. adhere to ethical and community linked thinking.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1-Introduction and course description	2	0	2
2-The hydrologic cycle	2	0	2
3- Stream flow and drainage system	2	0	2
4- Stream flow and hydrograph analyses	2	0	2
5- Rocks and water, porosity, and Hydraulic conductivity	2	0	2
6- Aquifer types and confining beds	2	0	2
7- Groundwater velocity, Transmissivity & storage coefficient	2	0	2
8- Groundwater movement, groundwater flow net	2	0	2
9- Cone of depression, aquifer boundaries & well interference	2	0	2
10- Analysis of aquifer test data	2	0	2
11- Time-drawdown analysis	2	0	2
12-Distance-drawdown analysis	2	0	2
13-Water-well design	2	0	2
14-Revision and Feedback	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
Image: Second	X	х	0	0	0	x

	a2	explore locations of hydrogeology data and how to use them in hydrologic investigations	X	0	0	0	X	х
	a3	realize how hydrogeology is interrelated with other natural and environmental science disciplines,	X	0	0	0	X	X
	a4	recognize the methods and techniques used in interpetation of the hydrogeology data.,	Х	X	0	0	0	X
	b1	investigate the distribution and migration of undergroundwater.	Х	0	0	0	Х	х
ual Skills	b2	analyze hydrologic processes, particularly the processes of precipitation, evaporation, infiltration, and runoff.	X	0	0	0	Х	X
Intellect	b3	Explore methods of hydrologic analysis, including aquifer types, groundwater movement, and aquifer hydraulic properties	X	X	0	0	0	X
	b4	envisage methods of hydrologic design, including design of flow chart.	х	х	0	0	0	х
sional	c1	acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,	X	0	0	0	Х	х
profes Is	c2	make and record accurate observations and measurements,	Х	0	0	0	Х	X
and J skill	c3	report accurate observations and measurements,	X	X	0	0	0	X
ictical	c4	analyze the various geological and structural issues of aquifers,	X	х	0	0	0	х
Pra	c5	carry out scientific research and evaluate hydrogeologic issues.	х	0	0	0	Х	Х
	d1	work productively with others,	х	Х	0	0	0	Х
ills	d2	communicate effectively in writing,	х	х	0	0	0	х
ral Ski	d3	organize and manage working time, schedule tasks, and meet deadlines,	X	X	0	0	0	X
ene	d4	Use computer, internet & communications.	x	X	0	0	0	X
Gi	d5	adhere to ethical and community linked thinking	X	X	0	0	0	X

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, b2, and d1	Fifth week	5 %
Mid-Term Exam	a1, b2.	Seventh week	5 %
Oral exam	a2, a3, a4, b1, c2, c3	Thirteenth week	10 %
Written exam	a1, a2, a3, b1, b2, c1, c2, c3,	Fourteenth week	80 %
	d1.		
	Total		100 %

-Course matrix

contents	Kn un	owle derst	dge a	and ng	Inte	ellect	ual s	kills	I pro	Practio fessio	cal ar nal s	nd kills	Ger	neral sl	kills	
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course	Х						Х						Х			
description																
The hydrologic cycle		Х				Х					Х					Х
Stream flow and				Х												
drainage system																
Stream flow and			Х													
hydrograph analyses																
Rocks and water,				Х										Х		
porosity and Hydraulic																
conductivity																
Aquifer types and						Х				Х						
confining beds																
Groundwater velocity,		Х						Х						Х		
Transmissivity & storage																
coefficient																
Groundwater movement,			Х										Х			
groundwater flow net																
Cone of depression,		Х							Х						Х	
aquifer boundaries &																
well interference																
Analysis of aquifer test	Х						Х					Х		Х		
data																
Time-drawdown analysis			X			X							X			
Distance-drawdown		Х								Х					Х	
analysis																
Water-well design		X														X
Revision and Feedback			X											X		

6- List of references:

6-1 Course notes

Course notes prepared by the course instructor(s) and approved by the Department council. **6-2 Required books.**

None

6-5 Recommended books

Basic ground-water hydrology (1987) By RALPH C. HEATH Library of Congress Cataloging in Publication Data Geological Survey water-supply paper; 2220.

Groundwater resource development Hamill, L. and Bell, F.G., (1986): British Library, ISBN 0-408-01409-1, pages. 253.

Hydrology Principles, Analysis, Design Revised 2nd edition Author: H. M. Raghunath Copyright © 2006 New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers pages 463.

6-6 Periodicals, Web sites, etc.

www.google.com & www.scincedirect.com

7- Facilities required for teaching and learning:

Data show: Power point presentations Sound system to ensure the ease listening Using a blackboard

Course coordinator:	Prof. Dr. Mohamed El-Fakharany / Dr. Nehad Mahmoud
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 319 Ch: Petroleum and petrochemistry

A. Affiliation		
Relevant program:	B.Sc. in Ge	ology
Department offering the program: Department offering the course: Academic year/level:	Department Department Third level	of Geology of Chemistry
B. Basic information		
Title: Petroleum and petrochemistry	Code:319Ch	Year/level: Third level
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical:3	Total:5 h/week

C. Professional information

1. Course Learning Objectives:

The objective of this course is to enable the students to understand general properties of the Petroleum and petrochemistry such as its origin, physical properties, separation processes, conversion processes and termination processes. Also, teach students the industery of petrochemistry and its application such as detergents and polymers.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- **a1.** Illustrate the origin of petroleum.
- **a2.** Describe the petroleum composition of petroleum oil.
 - **a3.** Outline the physical properties of the oil.

a4. Recognize the separation, conversion and treating processes.a5. Mention some of the current issues of application in petrochemical industry.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** Differentiate between the different types of petroleum.
- **b2.** Analyze the chemical composition of petroleum.
- b3. Point out different concepts in petroleum chemical processes.
 - b4. Analyze chemical treatment of the petroleum according to its composition.
 - **b5.** Distinguish between the different types of industrial products.

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

- c1. Investigate the chemical properties of chemical compounds.
- **c2.** Design the methods to determine the chemical composition of some organic compounds.

c3. Predict the chemical composition of these compounds.

c4. Identify the chemical composition of this compound.

d. General skills:

On successful completion of the course, the student should be able to: **d1.** Use computers and internet for information and communication technology. effectively.

d2. Solve problems on the scientific basis taught in this course.

d3. Search for new information about the new techniques.

d4. Discover the important of the petrochemistry industry in our life.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction to petroleum chemistry.	2		3
2. The theory of the origin of petroleum.	2		3
3. Prospecting for petroleum and gas fields.	2		3
4. Chemical composition of petroleum.	2		3
5. Physical properties of the petroleum and its products.	2		3
6. Petroleum processing.	2		3
7. Mid-Term Exam.	2		3
8. Separation processes.	2		3
9. Conversion processes.	2		3
10.Refining process	2		3
11.Treating process.	2		3
12. Revision of main petroleum process	2		3
13. The petrochemistry and its important.	2		3
14.Petrochemistry products.	2		3
Total hours	28		42

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1.	Illustrate the origin of petroleum.	\checkmark		\checkmark			\checkmark
ge & Iding	a2.	Describe the petroleum composition of petroleum oil.	\checkmark	\checkmark				
edg tan	a3.	Outline the physical properties of the oil.	\checkmark		\checkmark		\checkmark	\checkmark
Knowl nders	a4.	Recognize the separation, conversion and treating processes.	\checkmark		\checkmark		\checkmark	\checkmark
n Y	a5.	Mention some of the current issues of application in petrochemical industry.	\checkmark		\checkmark			\checkmark
	b1.	Differentiate between the different types of petroleum.	\checkmark		\checkmark		\checkmark	\checkmark
lal	b2.	Analyze the chemical composition of petroleum.	\checkmark		\checkmark			\checkmark
ellectı Skills	b3.	Point out different concepts in petroleum chemical processes.	\checkmark		\checkmark		\checkmark	\checkmark
Int	b4.	Analyze chemical treatment of the petroleum according to its composition.	\checkmark		\checkmark		\checkmark	\checkmark
	b5.	Distinguish between the different types of industrial products.	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
lls	c1.	Investigate the chemical properties of chemical compounds.	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
ical and ional ski	c2.	Design the methods to determine the chemical composition of some organic compounds.	\checkmark		~	~	\checkmark	\checkmark
Pract ofess	c3.	Predict the chemical composition of these compounds.	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Id	c4.	Identify the chemical composition of these compounds.	\checkmark		\checkmark	~	\checkmark	\checkmark
ills	d1.	Use computers and internet for information and communication technology effectively.	\checkmark					\checkmark
al Ski	d2.	Solve problems on the scientific basis taught in this course.	\checkmark		\checkmark		\checkmark	\checkmark
Gener	d3.	Search for new information about the new techniques.	\checkmark		\checkmark			\checkmark
	d4.	Discover the important of the petrochemistry industry in our life.	\checkmark					\checkmark

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, b2, c1 and d1	Fifth week	5 %
Mid-Term Exam	a1, a2, a3, b2, c1, d1, and d2	Seventh week	5 %
Oral exam	a1, a2, a3, a4, a5, b1, b2, b3,	Thirteenth week	10 %
	b4, b5, and d4		
Written exam	a1, a2, a3, a4, a5, b1, b2, b3,	Fourteenth week	80 %
	b4, b5, c1, c3, c4, d1, and d4		
	Total		100 %

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s)Approved from Chemistry Department.

6.2. Required books.

James G. Speight, The Chemistry and Technology of Petroleum, 4thEdn., Taylor & Francis Group, LLC2006.

6.3. Recommended books

- 1-Petroleum Refining Processes, James G. Speight and BakiÖzüm.
- 2- Introduction to Process Control, Jose A. Romagnoli and AhmetPalazoglu.
- 3- Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, edited by Leslie R. Rudnick.

http://www.greatachievements.org/?id=3675 http://www.cippe.com.cn/2013/en/

7. Facilities required for teaching and learning:

Using a microphone in lectures Using of slit overhead projector Using a black board Group Discussions Data show Course coordinator: Asst. Prof. Mohamed Abd El-Rahman Abo Riya Head of the Department: Prof. Dr. Wagdy Eldougdoug Date: 2022-2023

Course Specification 339 Ch: Physical chemistry

A. Affiliation		
Relevant program:	Geology BSc Program	
Department offering the program Department offering the course: Academic year/level:	m: Department of Department of Third level	of Geology of Chemistry
B. Basic information		
Title: Physical chemistry	Code: 339 Ch	Year/level: Third level
Teaching Hours:	Lectures: 2 Practical: 3	Tutorial: 0 Total: 5h/week

C. Professional information

1. Course Learning Objectives:

The objective of this course is to enable the students to understand the difference between kinitic and themodynamic, the catalysis science, the meaning of rate of reaction, factors affecting on the rate, the order of reaction and its types. Also, the molecularity, types of catalysis, mechanism of reaction and theories of reacion.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

- a1. Define the rate, molecularity, rate law, order of reaction and catalyst.
- **a2.** Describe types of order reaction and catalyst.
- **a3.** Discover factors effect on the rate of reaction.
- **a4.** Recognize the mechanism of reaction.
- **a5.** Mention some of theories of reaction.

b. Intellectual skills:

- On successful completion of the course, the student should be able to.
- **b1.** Differentiate between the different types of order of reaction and catalyst.
- **b2.** Analyze the chemical data to write the rate law of reaction.
- **b3.** Point out different factors effect on the rate of reaction.

b4. Illustrate the effect of temperature on the rate of reaction.

c. Practical and professional skills:

- On successful completion of the course, the student should be able to:
- **c1.** calculate the order of reaction.
- **c2.** Apply the knowledge that the student studied to design mechanism for chemical reaction

d - General skills:

On successful completion of the course, the student should be able to:

- **d1.** Use computers and internet for information and communication technology effectively.
- **d2.** Solve problems on the scientific basis taught in this course.

d3. wok in a team effectively, manage time and communicate with others positively.

d4. Discover the important of the chemical kinetics and catalyst in our life.

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
15. Introduction to chemical kinetic and catalysis.	2		3
16. The rate of reaction and Rate law	2		3
17. Types of catalysis	2		3
18. Order of reaction	2		3
19. Components of catalyst	2		3
20. Methods used in determining the order of reaction.	2		3
21. Mid-Term Exam.	2		3
22. Arrhenius equation	2		3
23. Mechanism of reaction	4		6
24. Preparation of catalyst	4		6
25. Collision theory and Transition state theory	2		3
26. Enzyme catalysis	2		3
Total hours	28		42

4. Teaching and Learning methods:

]	Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
k Ig	a1.	Define the rate, molecularity, rate law, order of reaction and catalyst	\checkmark	\checkmark	\checkmark	\checkmark		
edge & tandir	a2.	Describe types of order reaction and catalyst.	\checkmark	\checkmark			\checkmark	
In the second	a3.	Discover factors effect on the rate of reaction	~	\checkmark	\checkmark	~		\checkmark
R U	a4.	Recognize the mechanism of reaction.	\checkmark		\checkmark		\checkmark	\checkmark
	a5.	Mention some of theories of reaction.	\checkmark		\checkmark			\checkmark
llect al ills	b1.	Differentiate between the different types of order of reaction and catalyst	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Inte u Sk	b2.	Analyze the chemical data to write the rate law of reaction.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

	b3.	Point out different factors effect on the rate of reaction.	\checkmark	\checkmark	\checkmark			~
	b4.	Illustrate the effect of temperature on the rate of reaction.	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
a	c1.	Calculate the order of reaction.	\checkmark		\checkmark		\checkmark	\checkmark
Practic I and	c2.	Apply the knowledge that the student studied to design mechanism for chemical reaction	\checkmark		\checkmark		\checkmark	\checkmark
S	d1.	Use computers and internet for information and communication technology effectively.	\checkmark			\checkmark		\checkmark
ıl Skil	d2.	Solve problems on the scientific basis taught in this course.	\checkmark		\checkmark		\checkmark	\checkmark
iener:	d3.	wok in a team effectively, manage time and communicate with others positively	\checkmark		\checkmark			\checkmark
9	d4.	Discover the important of the chemical kinetic and catalyst in our life.	\checkmark		\checkmark	\checkmark		\checkmark

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, b1, b2, b3 c1, d1 and d3	Fifth week	5 %
Mid-Term Exam	a1, a2, a3, b1, b2, b3 c1 and d2	Seventh week	5 %
Oral exam	a1, a2, a3, a4, a5, b1, b2, b3, b4, c1, c2, d2 and d4	Thirteenth week	10 %
Written exam	a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, c1, c2 and d2	Fourteenth week	80 %
	100 %		

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) Approved from Chemistry Department.

6.2. Required books.

Margaret Robson Wright, An Introduction to Chemical Kinetics, John Wiley & Sons Ltd 2004.

6.3. Recommended books

- 1) P.V. Kamat, D. Meisel, Studies in Surface Science and Catalysis, Vol. 103; Semiconductor Nanoclusters—Physical, Chemical, and Catalytic Aspects, Elsevier: Amsterdam, 1997.
- 2) Reaction Kinetics, M. J. Pilling and P. W. Seakins
- 3) Chemical Kinetics, K. J. Laidler
- 1) P.R. Bevington, D.K. Robinson, McGraw-Hill, Boston, 1992.

6.4. Periodicals, web sites, etc.

- 1. http://www.chm.davidson.edu/vce/Kinetics/index.html
 - Virtual Chemistry Experiments Chemical Kinetics
- 2. <u>http://www.chem.arizona.edu/~salzmanr/480a/480ants/chemkine.html</u>

- Notes about Chemical Kinetics

3. <u>http://www.chem.uci.edu/undergrad/applets/sim/simulation.htm</u>

- Chemical Kinetic Simulation

4. <u>http://www.tutorvista.com/content/chemistry/chemistry-iv/chemical-kinetics/rate-of-reaction.php</u>

- Rate of reaction animation

7. Facilities required for teaching and learning:

Using a microphone in lectu	ires
Using a white board	
Group Discussions	
Data show	
Course coordinator:	Dr. Salah Ahmed Ibrahem Eid
Head of the Department:	Prof. Dr. Wagdy Eldougdoug
Date:	2022-2023

Course Specification

352 Ph: X-Rays diffraction and applications

A. Affiliatio	n					
Relevant program:		B.Sc. in Geology Program				
Department offering the program:			am:	Department of Geology		
Department offering the course: Academic year/level:		Physics Third level				
					B. Basic inf	ormati
Title: X- applications	Rays	diffraction	and	Code:352 Ph	Year/level: third level	

Teaching Hours:	Lectures:3	Tutorial: 0
_	Practical:0	Total: -3 h/week

C. Professional information

1. Course Learning Objectives:

By Finishing of this course the graduate will able to

Understanding the crystal structure according to the diffraction theory, know how to estimate the diffraction angle and beam intinsity . study the charge particles diffraction . using computer to analyze the reciperocal and unit cell of crystal structure

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should demonstrate knowledge and understanding of:

a1. Describe the crystal structure.

a2. Tell about beam diffraction.

a3. Recognize the relation between the nature of Incident beam and crystal dimensions.

a4. memorize the physical properties of X-Ray.

b. Intellectual skills:

On successful completion of the course, the student should be able to. **b1.** Compare the crystal structure of different materials.

b2. Collect lot of information about the nature of diffraction beams

b3. Classify the types of diffraction according to the wavelength.

b4. Assess according to the computer data, what is the unit cell

c. Practical and professional skills:

On successful completion of the course, the student should be able to. **c1.** Sketch the crystal structure and reciprocal cell.

c2.use computer to study some crystal
c3. analyze the data from X- Ray diffraction.

d. General skills:

On successful completion of the course, the student should be able to.

d1. How to calculate the diffraction angles according the beam energy

d2. Communicate to work efficiently in a team or separately.

d3. Collect data and wrighting reports in the different model of atomic structure and method of diffraction.

3. Contents

No.	Topic	Lecture	Tutorial	Practical
1101	1 opto	hours	hours	hours
1.	Theory of diffraction	3		0
2.	Crystal structure and reciprocal cell	3		0
3.	X-Ray production and the method of detection	5		0
4.	X-Ray camera receiver	3		0
5.	Estimating the intensity of diffraction beams	5		0
6.	Angles of diffraction	3		0
7.	Mid Term Exam	5		0
8.	Electron and neutron diffraction	3		0
9.	Calculating the energy of diffraction for particles	3		0
10	Diffraction pattern of x-ray	3		0
11	Study the unite cell using Computer	6		0
	Total hours	42		0

4 - Teaching and Learning methods:

Intende	d Lea	arning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
.~ 50	a1.	Describe the crystal structure	\checkmark		\checkmark		\checkmark	
ge & ndin	a2.	Tell about beam diffraction	\checkmark					\checkmark
owled	a3.	Recognize the relation between the nature of Incident beam and crystal dimensions	\checkmark		\checkmark			
Kn Und	a4.	memorize the physical properties of X-Ray	\checkmark		\checkmark		\checkmark	
sll	b1.	Compare the crystal structure of different materials	~					
ual Ski	b2.	Collect a lot of information about the nature of diffraction beams	\checkmark		\checkmark			\checkmark
ntellect	b3.	Classify the types of diffraction according to the wavelength	~		\checkmark			
II	b4.	Assess according to the computer data, what is the unit cell	\checkmark		\checkmark			\checkmark
ttical nd ssional	c1.	Sketch the crystal structure and reciprocal cell	\checkmark	\checkmark			\checkmark	
Prac al ofee	c2.	use computer to study some crystal	\checkmark	\checkmark	\checkmark		\checkmark	
[Id	c3.	analyze the data from X- Ray diffraction	\checkmark	\checkmark	\checkmark		\checkmark	
ills	d1.	How to calculate the diffraction angles according the beam energy	\checkmark	\checkmark			\checkmark	\checkmark
eral Sk	d2.	Communicate to work efficiently in a team or separately	\checkmark		~		\checkmark	
Gen	d3.	Collect data and wrighting reports in the different model of atomic structure and method of diffraction	\checkmark		\checkmark			\checkmark

5. Students' Assessment Methods and Grading:

Tools	To Measure	Time schedule	Grading
Semester Work	a.1, a.3, b.3, c.1, c.2, and d.1	Fifth week	5 %
Mid-Term Exam	a.2, a.3, b.1, b.2, c.1, c,3, d.2,	Seventh week	5 %
	and d.3		
Oral exam	a.3, b.3, c.1, and d.3	Thirteenth week	10 %
Written exam	All skills	Fourteenth week	80 %
Total			100 %

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructors.

6.2. Required books.

- 1. Richard J. D. Tilley (2004), Understanding Solids: The Science of Materials, John Wiley & Sons Ltd
- 2. M. A. Omar (1975), Elementary solid-state Physics: Principal and applications, Addison. Wesley, Philippines.

6.3. Recommended books.

1. Peter Hiaasen (1986), Physics of metallurgy, Cambridge Uni. Press, PP. 1, (Experimental methods for the Physical examination of metals)

2 D E smallman (1085) Modern Physical matellurgy Butterworth

2. R.E. smallman (1985), Modern Physical metallurgy, Butterworths, PP 26

6.4. Periodicals, Web sites, etc.

1- http://polychem.kaist.ac.kr/bk_home/2005polymerchem.htm

7. Facilities required for teaching and learning:

Using a microphone in lectures Using a black board Group Discussions Data show

Course coordinator: Dr. Hany Mohamed HazzaaHead of the Department: Prof. Dr. Saeed El-Sayed Abdel GhanyDate:2022-2023

Course Specification 400 G: Research Essay

A. Affiliation			
Relevant program:	B.Sc. in Geology		
Department offering the p	program:	Department of Geology	
Department offering the o	course:	Department of Geology	
Academic year/level:		Fourth level	
B. Basic information			

Title: Research essay	Code:400G	Year/level: fourth level
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical: 0	Total:2 h/week

C. Professional information

1. Course Learning Objectives:

This course is aimed to widen the range of academic and transferable skills associated with geological sciences education thus equipping graduates for either subject-related or employment opportunities. It provides a broad foundation for geological study and opportunities for subsequent specialization. Students to develop their geological abilities, knowledge, and career-related life-long learning skills.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- **a1.** generate geological research questions and to identify and use appropriate methods in reaching and reporting conclusions,
- **a2.** critically evaluate evidence, ideas and theoretical standpoints within a breadth of geographical and geological contexts,
- **a3.** undertake a deeper approach to learning and understanding.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** recognize the basic theoretical, philosophical and methodological issues relating to qualitative and quantitative research,
- **b2.** realize the concept of, and importance of, sustainability in the management of Earth and its resources,
- **b3.** discover the constructed and dynamic nature of all knowledge.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

c1. collect, record, analyze and present data of various forms using appropriate analytical techniques,

- **c2.** develop a reasoned and critical argument through the integration and interpretation of analytical data and observations,
- **c3.** accomplish timely organized research on a national or international relevant problem upon arrangement with a staff member "instructor".

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** communicate ideas and arguments effectively in writing, verbally, and graphically,
- **d2.** work and communicate effectively as part of a team,
- **d3.** demonstrate competence in the use of appropriate IT packages to find, explore, develop and present numbers, text and images.

3. Contents

Торіс		Tutorial hours	Practical hours
Topics are elected upon arrangement with the instructor in any of the geological sciences subjects or related environmental issue. Approval of the subject by the department council is necessary.	2		
Total hours	28	0	0

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
ge & ding	a1.	generate geological research questions and to identify and use appropriate methods in reaching and reporting conclusions,			\checkmark			~
inowledg nderstan	a2.	critically evaluate evidence, ideas and theoretical standpoints within a breadth of geographical and geological contexts,	\checkmark	~				
n N	a3.	undertake a deeper approach to learning and understanding.	\checkmark					\checkmark
tual Skills	b1.	recognize the basic theoretical, philosophical and methodological issues relating to qualitative and quantitative research,	\checkmark				\checkmark	
Intellec	b2.	realize the concept of, and importance of, sustainability in the management of Earth and its resources,	\checkmark	~				\checkmark

	b3.	discover the constructed and dynamic nature of all knowledge.	\checkmark	\checkmark			\checkmark
d cills	c1.	collect, record, analyze and present data of various forms using appropriate analytical techniques,	\checkmark			\checkmark	\checkmark
ctical an sional sł	c2.	develop a reasoned and critical argument through the integration and interpretation of analytical data and observations,	\checkmark		\checkmark	\checkmark	\checkmark
Prae profes	c3.	accomplish timely organized research on a national or international relevant problem upon arrangement with a staff member "instructor".	\checkmark			\checkmark	
ills	d1.	communicate ideas and arguments effectively in writing, verbally, and graphically,	\checkmark	\checkmark			\checkmark
ral Sk	d2.	work and communicate effectively as part of a team,	\checkmark	\checkmark			\checkmark
Gene	d3.	demonstrate competence in the use of appropriate IT packages to find, explore, develop and present numbers, text and images.	\checkmark	\checkmark		\checkmark	\checkmark

5. Students' Assessment Methods and Grading:

5.1. Discussions

5.2. Assignments to assess the student independent work, and final written essay to evaluate the work within a team.

Tools	Grading
Semester work	20 %
Report preparation	30 %
Presentation	10 %
Discussion and Oral exam	40 %
	100 %

6. List of references:

6.1. Course notes

Materials are arranged through discussions and meetings with the instructor and from the faculty library.

6.2. Required books.
None
6.3. Recommended books
Scientific Writing
http://www.columbia.edu/cu/biology/ug/research/paper.html

6.4. Periodicals, Web sites, etc. None

7. Facilities required for teaching and learning:

Data show and equipped hall, PCs with access to the internet

Course coordinator:	Prof. Dr. Gamal El Qot Dr. Wafaa Elshahat Afifi
Head of the Department: Date:	Prof. Dr. Gamal El Qot Approved on 9/12/2015 (meeting number 390) and updated on 10/1/2018 (meeting number 419) and updated on 2022/2023

Course Specification 405 G: Field Training

A-Affiliation

Relevant program:	Geology B.Sc., Prog	gram
Department offering t	he program:	Department of Geology
Department offering t	he course:	Department of Geology
Academic year/level:		Fourth level

B - Basic information

Title: Field Geology	Code:405 G	Year/level: Fourth level
Teaching Hours:	Lectures:0	Tutorial: 0
	Practical:3	Total:3h/week

C - **Professional information**

1 – Course Learning Objectives:

The objective of this course is to introduce students to fundamentals of field geology. The students will be teached how to report geological features, data and samples. The course is designed to familiarize students with geologic mapping techniques, and to encourage the use of sedimentology and field-structural for lithology identification and stratigraphic setting.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

- On successful completion of the course, the student should:
 - a.1.study the field relations between various lithologies,
 - a.2. recognize non-tectonic- and tectonic-structures in outcrop- and regional-scales.
 - a.3. demonstrate successive relations between geologic structures,
- a.4. analyze collected field-structural measurements,
- a.5. decide which mapping technique is appropriate

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b.1. differentiate between various lithologies in the field,
- b.2. use different techniques in geologic mapping,
- b.3.demenostsate the basic and progressed techniques and methods to analyze structural data,
- b.4.recognizefield relations and geologic features at different scales, and
- b.5. relate software and hardware in stratigraphy and paleontology.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to: c.1.locate himself in the field.

- c.2.describe and identify different lithologies and stratigraphic setting in the field,
- c.3.collect samples for paleontological studies,
- c.4. report the field observations in a comprehensive trip report.

d - General skills:

On successful completion of the course, the student should be able to:

- d.1. work in a team,
- d.2. adhere to safty and security regulations.
- d.3. collaborate with peers in a common project.
- d.4.organize a short-term trip for projected geological purpose

3- Content:

Торіс	Field Trip	Technical Report
1- Introduction		
2- Field equipment, rules, behavior and safety in the		
Field		
3- Planning for a field trip		
4- Observation study and reporting		
5- Hand specimen collection		
6- Descripting an exposure		
7- Measuring structural elements in the field		
8- Geologic - and structural- traverses		
9- Interpretations based on limited data and time		
10- Reporting measurements and observations		
11- Geologic mapping techniques		
12- Mineral deposits and their setting		
13- Filed study in hydrology		
14- Writing technical a report		
Total hours	28	14

4 - Teaching and Learning methods:

			Intended Learning Outcomes	Field Trip	Technical Report
e	di	a1	study various kinds of structural fabrics	Х	0
edg	tan	a2	recognize field-structural relations	Х	0
M o	a is g	a3	demonstrate structural history of an area	Х	0
<u>X</u> nc	pu	a4	analyze collected field-structural measurements	Х	0
	C	a5	decide which mapping technique is appropriate	Х	0
-		b1	differentiate between primary- and secondary strutures	Χ	0
tua	S	b2	use Brunton Compass in collecting structural data	X	0
llec	ikil	b3	demonstratesuccessive relations between geologic structures	Χ	0
nte		b4	Recognize and recordductile- and brittle-structures	X	X
Ι		b5	relate software and hardware in structural synthesis	X	0
al	lo Is	c1	interpret geologic- and structural- maps,	Х	0
, tica	nd essi ikill	c2	analyze geological features on aerial and satellite images,	Х	0
rac	ar rofi al s	c3	use software in plotting and analyze directional data	Х	0
Р	d u	c4	contribute in developing mapping techniques	X	0
		d1	collect and recordfield-structural data	Х	Х
eneral	skills	d2	transfer the projected goals to findings using collected field- structural data, construct maps, and write a technical report	0	x
5 °	J	d3	Cooperate and work in a team smoothly while managing the time, and go to point and targeted goals.	X	X

5- Students' Assessment Methods and Grading:

- 5.1. Field behavior and activity,
- 5.2. Assignments to assess the student during geologic-structural traverses and collecting filed data,
- 5.3. Field Notebook, technical report and simplified geologic- and structural maps,
- 5.4. Student participation in outcrop investigation and group discussions.

Tools	To Measure	Time schedule	Grading			
Field Work	a1-5, b1-5, c1-4, and d3	Field trip	60 %			
Technical Report and Field Notebook	d3, d2 and d3	Field and office Work	40 %			
	Total		100 %			

6- List of references:

6-1 Course notes

Power point presentations

6-2 Required books.

None

6-7 Recommended books

McClay, K.R. (1995) The mapping of geological structures. John Wiley & Sons, New York.

Barnes, J.W. with Lisle, R.J. (2003) Basic geological mapping (4th edition). Blackwell Science, 196p.

Gokhale, N.W (2007) Guide to field geology. Cbs Publishers & Distributors, London.

Lisle, R.J. and Leyshon, P.R. (2004) Stereographic projection techniques in structural geology (2nd edition). Cambridge University Press.

6-8 Periodicals, Web sites, etc.

http://www.geology.pitt.edu/GeoSites/field_geology.htm

http://www.field-geology.com/

http://ncgmp.usgs.gov/ncgmpgeomaps

http://ncgmp.usgs.gov/ncgmpgeomaps

http://en.wikipedia.org/wiki/Geologic_map

http://academic.emporia.edu/aberjame/field/geo_map.htm

http://www.geology.siu.edu/courses/geol454/index.html

http://ncgmp.usgs.gov/

http://csmres.jmu.edu/geollab/Fichter/Wilson/wilsonsimp.html

http://www.geo.utexas.edu/courses/660/

http://banglapedia.net/HT/F_0066.HTM

7- Facilities required for teaching and learning:

Field equipments; transportation gear, camping gear, mapping gear and outdoor gear.

Course coordinator:	Prof. Refaat Osman Prof. Gamal El Qot Prof. Emad Sallam
Head of the Department: Date:	Prof. Gamal El Qot Approved on 9/12/2015 (meeting number 390) and updated on 10/1/2018 (meeting number 419) updated on 2022/2023

Course Specification 407 G: Engineering Geology

A. Affiliation								
Relevant program: B	B.Sc. in Geology Program	. in Geology Program						
Department offering the pro Department offering the cou Academic year/level:	ogram: Departn urse: Departn Fourth l	nent of Geology nent of Geology evel						
B. Basic information								
Title: Engineering Geology	Code:407G	Year/level: Fourth level						
Teaching Hours:	Lectures: 2	Tutorial: 0						
_	Practical: 2	Total:4 h/week						

C. Professional information

1. Course Learning Objectives:

This course is designed to introduce students to the major principles of physical geology covering the structure of the Earth, plate tectonics, volcanism and other mountain building processes, the surface erosion process, and the formation and properties of minerals and rocks. The relationship between application of geological knowledge to civil engineering problems such as landslide, subsidence and earthquake etc. To inspire the students to think clearly and critically the solution of the civil engineering problems in the context of geological knowledge

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- a1.Acquire the knowledge of the most important rocks and minerals
- a2. Realize the relationship between rocks and engineering
- a3. Identify weathering as they influence civil engineering works
- a4. Review mass movement as they influence civil engineering works
- a5. Demonstrate the seismic wave and earthquake.
- a6. Review the Atterberg limits of soil.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- b1.Import, survey, classify and criticize the published Engineering Geology and industrial rock data.
- b2. Apply the information, the experimental and field methods in solving site engineering and industrial rock resources management and related problems.
- b3. Set-up discussions concerning the program's aims, concerning research plans, work-steps and give value to the other arguments.
- b4. Organize the suitable work methods and time-plan to carry out field studies in a given site or quarry.

- b5. Arrange the appropriate tools and techniques for a given experiments both in situ or laboratory.
- b6. Assemble and integrate the collected surface and subsurface observations, results and data.
- b7. Relate each group data to their responsible sources, and then derive the best design to produce, display, interpret, manage and/or predict the engineering and industrial problems in geotechnical report.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1.Design and undertake Engineering Geology and rock mechanics experimental analyses and field studies and assess their results.
- c2. Construct and carry out the Engineering Geology and rock mechanics scientific researches and applied projects and fulfill their written reports.
- c3. Evaluate and carrying out the feasibility studies of engineering projects and writing geotechnical reports.
- c4.Interpret the scientific and applied geotechnical maps, sections and documents.
- c5. Use Information Technology (IT) in the different steps of collecting, presenting and analyze the geotechnical and rock mechanics data.

d. General skills:

On successful completion of the course, the student should be able to:

- d1.Collaborate effectively and positively with others as a part of team through constructive discussions and arguments.
- d2. Undertake responsibility of doing Engineering and industrial rocks projects by himself and the others in team works.
- d3. Formulate well scheduled working-plan and carry out its requirements both in situ and laboratory.
- d4. Use the modern software and IT in different engineering and industrial tasks, simulation and modeling.
- d5. Display the engineering and industrial information and results using the suitable equipments and / or explanatory posters, reports and models. collect data from books and other resources.

3. Contents

Tonio	Lecture	Tutorial	Practical
Торіс	hours	hours	hours
1- Introduction of Engineering Geology	2		2
2- Civil Engineering and Engineering Geology	2		2
3- Earth structure, minerals, and rocks	2		2
4- Structural geology and mapping techniques	2		2
5- Physical and engineering properties of rocks	2		2
6- Geologic work of surface and subsurface water	2		2
7- Engineering concerns of rocks.	2		2
8- Formation of soils	2		2
9- Data trends, anisotropy and the uncertainty associated	2		2
with geostatistical estimation			
10-Different types of soils	2		2
11- Weathering mechanisms	2		2
12-Mass Movements: landslide and Factor of Safety	2		2
13-Plate Tectonics and Crust Movement	2		2
14-Engineering Classification of Soils	2		2
Total hours	28		28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
ding	a1.	Acquire the knowledge of the most important rocks and minerals	\checkmark					
erstan	a2.	Realize the relationship between rocks and engineering	~	\checkmark	~	\checkmark		
Unde	a3.	Identify weathering as they influence civil engineering works	~	\checkmark				
dge &	a4.	Review mass movement as they influence civil engineering works	~	\checkmark	~			\checkmark
nowle	a5.	Demonstrate the seismic wave and earthquake.				\checkmark		
Ю	аб.	Review the Atterberg limits of soil.			\checkmark	\checkmark		
al Skills	b1.	Import, survey, classify and criticize the published Engineering Geology and industrial rock data.		\checkmark		\checkmark		
Intellectus	b2.	Apply the information, the experimental and field methods in solving site engineering and industrial rock resources management and related problems.					\checkmark	~

	b3.	Set-up discussions concerning the program's aims, concerning research plans.						
		work-steps and give value to the other arguments				\checkmark		
	b4.	Organize the suitable work methods and time-plan to carry out field studies in a given site or quarry.	\checkmark					
	b5.	Arrange the appropriate tools and techniques for a given experiments both in situ or laboratory.	\checkmark	\checkmark	\checkmark	\checkmark		
	b6.	Assemble and integrate the collected surface and subsurface observations, results and data.	\checkmark	\checkmark				
	b7.	Relate each group data to their responsible sources, and then derive the best design to produce, display, interpret, manage and/or predict the engineering and industrial problems in geotechnical report.	\checkmark	\checkmark	\checkmark			\checkmark
lls	c1.	Design and undertake Engineering Geology and rock mechanics experimental analyses and field studies and assess their results.				\checkmark		
fessional ski	c2.	Construct and carry out the Engineering Geology and rock mechanics scientific researches and applied projects and fulfill their written reports.			\checkmark	\checkmark		
nd profe	c3.	Evaluate and carrying out the feasibility studies of engineering projects and writing geotechnical reports.		\checkmark		\checkmark		
tical a	c4.	Interpret the scientific and applied geotechnical maps, sections and documents.					\checkmark	\checkmark
Prac	c5.	Use Information Technology (IT) in the different steps of collecting, presenting and analyze the geotechnical and rock mechanics data.				\checkmark		
	d1.	Collaborate effectively and positively with others as a part of team through constructive discussions and arguments.	\checkmark					
ills	d2.	Undertake responsibility of doing Engineering and industrial rocks projects by himself and the others in team works.	\checkmark	\checkmark	\checkmark	\checkmark		
meral Sk	d3.	Formulate well scheduled working-plan and carry out its requirements both in situ and laboratory.	\checkmark	\checkmark				
Ğ	d4.	Use the modern software and IT in different engineering and industrial tasks, simulation and modeling.	\checkmark	\checkmark	\checkmark			\checkmark
	d5.	Display the engineering and industrial information and results using the suitable equipments and / or explanatory posters,				\checkmark		

reports and models. collect data from books			
and other resources.			1

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs b, c	Thirteenth week	24 %
Oral exam	ILOs b, c	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and I			Inte	Intellectual skills			Practical and				General skills			
	un 1	ders		ng	1 1	1.0	1.2	1.4	pro	ressio	nai s	KIIIS	11	10	12	14
	al	a2	a3	a4	bl	b2	b3	b4	cl	c2	C3	c4	dl	d2	d3	d4
Introduction of	Х						Х						Х			
Engineering Geology																
Civil Engineering and		Х				Х					Х					Х
Engineering Geology																
Mineralogy				Х												
Rock-forming minerals			X													
Rocks and their related				Х										х		
activities																
Metamorphic rocks and						Х				Х						
metamorphism																
Engineering concerns of		Х						х						Х		
rocks.																
Formation of soils			X										Х			
Data trends, anisotropy		Х							Х						х	
and the uncertainty																
associated with																
geostatistical estimation																
Different types of soils	Х						Х					Х		Х		
Weathering mechanisms			Х			Х							Х			
Mass Movements:		Х								Х					Х	
landslide and Factor of																
Safety																
Plate Tectonics and		Х														Х
Crust Movement																

Engineering		Х						Х	
Classification of Soils									

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6.2. Required books. None

6.3. Recommended books

- Legget, Robert F., and Karrow, Paul F., 1983, Handbook of geology in civil engineering: McGraw-Hill Book Company, 1,340 pages, 50 chapters, five appendices, 771 illustrations. ISBN 0-07-037061-3
- Wang H. F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton Press, (2000).

6.4. Periodicals, Web sites, etc.

International Journal of Remote Sensing The Egyptian Journal of Remote Sensing and Space Science <u>http://gdex.cr.usgs.gov/gdex/</u> Books and manuals on aerial photography, and the whole collection of aerial photos of Egypt available at the Geology Department.

7. Facilities required for teaching and learning:

Data show	
Sound system to ensure the e	ease listening
Using a blackboard	
Group discussions	
Course coordinator:	Prof. Dr. Refaat Osman, Asst. Prof. Adel Maady
Head of the Department:	Prof. Dr. Gamal El Qot

Head of the Department:	Prof. Dr. Gamal El G
Date:	2022/2023

Course Specification

409 G: Subsurface geology and Paleomagnetism

A-Affiliation

Relevant program:	B.Sc. in Geology	
Department offering t	he program:	Department of Geology
Department offering t	Department of Geology	
Academic year/level:		Fourth level

B - Basic information

Title: Subsurface geology and	Code:409G	Year/level: Fourth level
Paleomagnetism		
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical: 2	Total:4 h/week

C - **Professional** information

1 – Course Learning Objectives:

This course is designed to introduce students to the study of structure and processes in the Earth, from the global scale to the shallow subsurface. It outlines key discoveries of global and lithospheric geophysics and shows how these were deduced from observed data. The course has an emphasis on the principles behind geophysical concepts, methods and data analysis. For students interested in exploration geophysics, this course provides students with a broader coverage of geophysics and a sound theoretical background, balanced by practical exercises involving experimental work, data acquisition and data analysis.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1. illustrate the different terminology, principles and techniques related to subsurface geology,
- a2. recognize the significance of subsurface geology in solving different economic and environmental problems,
- a3. characterize each type of the tools and methods used in geological and paleomagnetism applications,
- a4. demonstrate how subsurface geology is important for resource exploration, land use and town planning.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

b1. Interpret the structural and subsurface and surface geology in exploration of oil, gas, water and economic minerals and elements.,

- b2. compare between the different rock types,
- b3. analyze the various projection results for a 3-d body,
- b4. predict and solve the geological geo-environmental problems,

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. analyze subsurface measurements and plan a project,
- c2. use the subsurface tools in detecting hidden structures and ore bodies,
- C3. draw interpretations of magnetic measurements and well logs.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. review available literature and study the area,
- d2. interpret measurements using software to write a report,

d3.apply knoweldge and training in subsurface problems.

d3. work in a group and manage time and effort.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1- Introduction to magnetic studies	2	0	2
2- Magnetization of deep-sea sediments.	4	0	4
3- Magnetic anomalies & seafloor spreading model.	4	0	4
4- Rates of seafloor spreading.	4	0	4
5- Dating of ocean floor.	2	0	2
6- Continental drift and paleomagnetism.	2	0	2
7- Evidence for continental drift early in the debate.	2	0	2
8- Interpretation of fossil magnetism.	4	0	4
9- Paths of polar wandering / migration of continents.	4	0	4
Total hours	28	0	28

	Inte	ended Learning Outcomes (ILOs)	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
nding	a1	illustrate the different terminology, principles and techniques related to subsurface geology,	\checkmark					
Understa	a2	recognize the significance of subsurface geology in solving different economic and environmental problems,	\checkmark	\checkmark	\checkmark	\checkmark		
vledge &	a3	characterize each type of the tools and methods used in geological and paleomagnetism applications,		\checkmark				
Knov	a4	demonstrate how subsurface geology is important for resource exploration, land use and town planning		\checkmark	\checkmark			\checkmark
Skills	b1	interpret the structural and subsurface and surface geology in exploration of oil, gas, water and economic minerals and elements.,						
al S	b2	compare between the different rock types.						
tellectu	b3	analyze the various projection results for a 3-d body,						
Int	b4	predict and solve the geological geo- environmental problems,					\checkmark	
and nal	c1	analyze magnetic measurements and plan a project,				\checkmark		
nctical ofessio skills	c2	use the subsurface tools in detecting hidden structures and ore bodies,			\checkmark			
Pra	c3	draw interpretations of magnetic measurements and well logs.	\checkmark		\checkmark			
lls	d1	review available literature and study the area,	\checkmark				\checkmark	
ral Ski	d2	interpret measurements using software to write a report,	\checkmark			\checkmark		
Gene	d3	apply knoweldge and training in subsurface problems.				\checkmark		
	d4	work in a group and manage time and effort.						

4 - Teaching and Learning methods:

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activates and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Knowledge and understanding			Intellectual skills			Practical and professional skills				General skills					
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to magnetic	Х						Х						Х			
studies																
Magnetization of deep-		Х				X					Х					Х
sea sediments.																
Magnetic anomalies &				х												
seafloor spreading																
model.																
Rates of seafloor			Х													
spreading.																
Dating of ocean floor.				X										X		
Continental drift and						х				х						
paleomagnetism.																
Evidence for continental		Х						Х						Х		
drift early in the debate.																
Interpretation of fossil			Х										Х			
magnetism.																
Paths of polar wandering		Х							Х						Х	
/ migration of continents.																

6- List of references:

6-1 Course notes Lecture notes prepared by the course instructor(s) Power point presentations

6-2 Required books.None6-9 Recommended books

An Introduction to applied and environmental geophysics (Reynolds, 1997)

6-10 Periodicals, Web sites, etc.

7- Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinator:	Prof. Dr. Hesham Zahra Dr. Wafaa Elshahat Afifi
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 411 G: Palynology and Fossil Imprints

A. Affiliation			
Relevant program:	B.Sc. in G	eology	
Department offering th Department offering th Academic year/level:	e program: e course:	Depar Depar Fourth	tment of Geology tment of Geology 1 level
B. Basic information			
Title: Palynology and F Imprints	ossil	Code:411G	Year/level: Fourth level
Teaching Hours:		Lectures: 2 Practical: 2	Tutorial: 0 Total: 4 h/week

C. Professional information

1. Course Learning Objectives:

On completion of the course, the students will be able to provide students with a set of practical skills that will allow students to date a rock sample and reconstruct the climate at the time of deposition, based on constituent palynomorphs. To meet this goal, there are three primary course objectives: 1) Explore the function and morphology of pollen and spores, using modern specimens as the primary examples. 2) Examine the organic evolution of plants, from the Cambrian colonization of the land to the Cretaceous rise of flowering plants, as recorded by fossil pollen and spores. 3) Understand the relationships between temperature, precipitation and vegetation cover.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

- On successful completion of the course, the student should:
 - **a1.** review the classification of the plant kingdom into phyta,
 - a2. list the plant families according to morphological and anatomical characters,
 - a3. recoginze plants into families according to the composition of their fossils,
 - a4. demonstrate the newer aspects of taxonomy based on chemical or genetic profiles.

b. Intellectual skills:

- On successful completion of the course, the student should be able to.
 - **b1.** separate closely related species macroscopically and microscopically,
 - **b2.** differentiate between closely related species by advanced taxonomy as serology, palynology, cytotaxonomy, and chemotaxonomy,
 - **b3.** compare and contrast the function and morphology of pollen and spores,
 - **b4.** describe and illustrate modern and fossil spores and pollen grains.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- **c1.** make type slides from dried herbarium specimens,
- c2. extract palynomorphs from sedimentary rocks and mount them for study,
- c3. date any palynomorph-bearing sample to the correct geologic period,
- c4. reconstruct vegetation and paleoclimate based on palynomorph assemblages.

d. General skills:

On successful completion of the course, the student should be able to:

- d1. review available literature and study the area,
- d2. interpret measurements using software to write a report,
- **d3.** apply knoweldge and training in survey problems.
- **d4.** work in a group and manage time and effort.

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction to plant taxonomy	4	0	4
2. Principles of taxonomy	4	0	4
3. History of classification systems palynology	4	0	4
4. Current systems of classification	4	0	4
5. Types of different classification keys	4	0	4
6. Relation of taxonomy to other sciences	4	0	4
7. Fossil botany	4	0	4
Total hours	28	0	28

4. Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1.	review the classification of the plant kingdom into phyta,		\checkmark		\checkmark		
lge & nding	a2.	list the plant families according to morphological and anatomical characters,					\checkmark	\checkmark
owled dersta	a3.	recognize plants into families according to the composition of their fossils,				\checkmark		
Kr Un	a4.	demonstrate the newer aspects of taxonomy based on chemical or genetic profiles.		\checkmark	\checkmark			
llect al Ills	b1.	separate closely related species macroscopically and microscopically,	~		~	\checkmark		
Intel uź Ski	b2.	differentiate between closely related species by advanced taxonomy as	\checkmark				\checkmark	

		serology, palynology, cytotaxonomy, and chemotaxonomy,						
	b3.	compare and contrast the function and morphology of pollen and spores,	\checkmark			\checkmark		
	b4.	describe and illustrate modern and fossil spores and pollen grains.		\checkmark		\checkmark		
d cills	c1.	make type slides from dried herbarium specimens,					\checkmark	\checkmark
cal an nal sk	c2.	extract palynomorphs from sedimentary rocks and mount them for study,				\checkmark		
ractic		date any palynomorph-bearing sample to the correct geologic period,		\checkmark	\checkmark			
bro J	c3.	reconstruct vegetation and paleoclimate based on palynomorph assemblages.	\checkmark		\checkmark	\checkmark		
S	d1.	review available literature and study the area,	\checkmark				~	
l Skill	d2.	interpret measurements using software to write a report,	\checkmark			\checkmark		
eneral	d3.	apply knowledge and training in survey problems.		\checkmark		\checkmark		
9	d4.	work in a group and manage time and effort.					\checkmark	\checkmark

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- **5.3.** Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Knowledge and understanding					d Intellectual skills			Practical and professional skills				General skills					
	al	al a2 a3 a4			b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4		
Introduction to plant	х						x						Х					
taxonomy																		
Principles of taxonomy		X				X					Х					X		

History of classification			Х						
systems palynology									
Current systems of		Х							
classification									
Types of different			Х					Х	
classification keys									
Relation of taxonomy to				Х		Х			
other sciences									
Fossil botany	Х				Х			Х	

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6.2. Required books.

Traverse, A., 2008. Paleopalynology, 2nd ed. Springer, Dordrecht, 813 p. **6.3. Recommended books**

Esaue, k. (1976). Anatomy of Seed Plant. 2nd edition, Johan Wiley & Sons.

6.4. Periodicals, Web sites, etc.

7. Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinator:	Prof. Gamal El Qot Prof. Hassan El-Sheikh Prof. Fatma Shaker
Head of the Department: Date:	Prof. Dr. Gamal El Qot Approved on 9/12/2015 (meeting number 390) and updated on 10/1/2018 (meeting number 419) 2022/2023

Course Specification 415 G: Geology of Egypt

A-Affiliation

Relevant program:	B. Sc.in GeologyP	rogram
Department offering t	he program:	Department of Geology
Department offering t	he course:	Department of Geology
Academic year/level:		Fourth Level

B - Basic information

Title: Geology of Egypt	Code: 415G	Year/level: Fourth level
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical: 2	Total:4 h/week

C - **Professional information**

2 – Course Learning Objectives:

This course is dedicated to furnishing the student with the necessary basic information about the geology of Egypt in terms of sedimentary cover over the Precambrian basement and their depositional environments and related oil and ore potential.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1. trace the basics, fundamentals and developments related to the geology of Egypt,
- a2. demonstrate the influence of professional practices of geological studies on the community and the environment,
- a3. follow the basics and ethics of scientific research and professional practices,
- a4. appreciate the principles and basics of quality control and its application in geological field.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. distinguish between the different types of weathering and their effects on the soil,
- b2. integrate useful solutions of soil conservation from winds.

c - Practical and professional skills:

On successful completion of the course, the student should be able to:

c1. execute professional reports related to geology of Egypt in a responsible, safe and ethical manner for preparation of his/her research.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. work with peers on small projects,
- d2. accomplish given scientific tasks either individually, or with a group,
- d3. apply CIT, tools and scientific resources effectively in different tasks related to geology of Egypt,
- d4. Communicate scientific data orally to the class audience with the help of technology aids such as a PowerPoint presentation.

3 – Contents

Tonio	Lecture	Tutorial	Practical
Торіс	hours	hours	hours
1- General Introduction	2	0	2
2- Precambrian rock units in Egypt.	2	0	2
3- Classification and distribution of phanerozoic rocks	2	0	2
4- Lower Paleozoic rock units of Egypt	2	0	2
5- Upper Paleozoic rock units of Egypt	2	0	2
6- Triassic rock units of Egypt	2	0	2
7- Jurassic rock units of Egypt	2	0	2
8- Lower Cretaceous rock units of Egypt	2	0	2
9- Upper Cretaceous rock units of Egypt	2	0	2
10-Paleogene rock units of Egypt	2	0	2
11-Neogene rock units of Egypt	2	0	2
12-Oil and gas possibilities in Egypt	2	0	2
13- The value and distribution of mineral deposits in	2	0	2
Egypt			
14- Revision and feedback	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1	trace the basics, fundamentals and						
50		developments related to the geology of Egypt,	•					
e & Iing	a2	demonstrate the influence of professional		1	,			
dge and		practices of geological studies on the						
vle rst:		community and the environment,						
xnov inder	a3	follow the basics and ethics of scientific	\checkmark	\checkmark	\checkmark			
I	a4	appreciate the principles and basics of quality	1				,	1
	u-f	control and its application in geological field.						\checkmark
nt et	b1	distinguish between the different types of						
II e e		weathering and their effects on the soil,			v	N		

	b2	integrate useful solutions of soil conservation from winds.	\checkmark					
Practical and professional skills	c1	execute professional reports related to geology of Egypt in a responsible, safe and ethical manner for preparation of his/her research.				\checkmark	\checkmark	\checkmark
	d1	work with peers on small projects,						
ills	d2	accomplish given scientific tasks either individually, or with a group,		\checkmark				
meral Sk	d3	apply CIT, tools and scientific resources effectively in different tasks related to geology of Egypt,	\checkmark		\checkmark			
Ge	d4	Communicate scientific data orally to the class audience with the help of technology aids such as a PowerPoint presentation.				\checkmark	\checkmark	

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate the students and promote to other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	owle	dge	and	Inte	ellect	ual s	kills	I	Practic	cal ar	nd	Gei	neral sl	cills	
	un	ders	tandi	ng	1.1	1.0	1.0	1.4	pro	Tessio	nal s	KIIIS	11	10	10	14
~	al	a2	a3	a4	bl	b2	b3	b4	cl	c2	c3	c4	dl	d2	d3	d4
General Introduction	Х						X						Х			
Precambrian rock units		Х				Х					Х					Х
in Egypt.																
Classification and				Х												
distribution of																
phanerozoic rocks																
Lower Paleozoic rock			Х													
units of Egypt																
Upper Paleozoic rock				Х										х		
units of Egypt																
Triassic rock units of						X				Х						
Egypt																
Jurassic rock units of		Х						Х						Х		
Egypt																
Lower Cretaceous rock			Х										Х			
units of Egypt																
Upper Cretaceous rock		Х							Х						Х	
units of Egypt																
Paleogene rock units of	Х						Х					х		х		
Egypt																
Neogene rock units of			Х			X							Х			
Egypt																
Oil and gas possibilities		Х								Х					Х	
in Egypt																
The value and		Х														Х
distribution of mineral																
deposits in Egypt																
Revision and feedback			Х											х		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor. Power point presentations

6-2 Required books.

None

6-11 Recommended books

6-12 Periodicals, Web sites, etc.

http://www.nhm.ac.uk/research-curation/research/projects/duxbury/database / http://www.ucl.ac.uk/GeolSci/micropal/welcome.html

7- Facilities required for teaching and learning:

- Data show
- Sound system to ensure the ease of listening
- Traditional chalk or pen board
- Microscopes
- Lab space equiped with the necessary devices and chemicals for sample processing

Course coordinator:

Prof. Gamal El Qot Prof. Hassan El-Sheikh Prof. Refaat Osman

Head of the Department: Date:

Prof. Gamal El Qot Approved on 9/12/2015 (meeting number 390) and updated on 10/1/2018 (meeting number 419) and updated on 2022/2023

Course Specification 430 G: Geotectonics and geochronology

A-Affiliation

Relevant program:	B.Sc. in Geology	
Department offering t	he program:	Department of Geology
Department offering t	he course:	Department of Geology
Academic year/level:		Fourth level

B - Basic information

Title: Geotectonics and	Code:430G	Year/level: fourth level
geochronology		
Teaching Hours:	Lectures: 2	Tutorial: 0
-	Practical: 2	Total:4 h/week

C - **Professional information**

1 – Course Learning Objectives:

This course is designed to enable students to reconstruct the major tectonic events of the Earth's crust, deformation, kinematics and stability. Students to investigate the concept of plate tectonics and to deduce the role of radiogenic isotopes in identifying the age and source of crustal rocks based on their isotopic systematics.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should be able to:

- al.recognize the historical development of ideas and scientific breakthroughs associated with formulation of the Plate Tectonics theory,
- a2. assess the basic physical and geochemical processes that constrain the modern models for Earth's internal structure,
- a3. demonstrate the use and importance of radiogenic isotopes in studying geological and geotectonic subjects,
- a4. recall the radiogenic isotope systems for age and setting of formation.

b - Intellectual skills:

Successful students should be able to.

- b1. discuss the evolution of Eart's crust in view of the Plate Tectonics theory,
- b2. envisage the geometry of plate margins and evolution of continents and oceans along the time,
- b3.explain the basic and advanced research points related to the evolution of Plate Tectonics,
- b4. investigate the mutual relationship between radiogenic isotope geochemistry of the crustal rocks and their evolution along the Earth's history.

b5.recount the different systems of selected radiogenic isotopes, e.g., U/Pb, K/Ar, and Rb/Sr.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. reconstruct the geotectonic setting using structure and geochemical data,
- c2. analyze bulk rock geochemical and radiogenic isotope data for the geotectonic settings,
- c3.use the different software and apply methods to solve geological problems,
- c4. interprete the isotope value data of a rock or ore deposit for the setting of a specific orogeny.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. review available data from publication and other resources,
- d2. analyze the results in a meaningful readable final form,
- d3. work in team or mosaic a piece of work with other peers.

3 – Contents

Topic	Lecture	Tutorial	Practical
	hours	hours	hours
1. Introduction to Geotectonics and plate	2	0	2
boundaries			
2. Internal structure of the Earth	2	0	2
3. Continental drift and ocean floor spreading	2	0	2
4. Oceanic ridges and transform faults	2	0	2
5. Subduction zones, and collisional sutures	2	0	2
6. Impact of the plate tectonics	2	0	2
7. Plate tectonics and metallogenic provinces	2	0	2
8. Introduction to radiogenic isotopes of elements	2	0	2
9. Atom structure and decay	2	0	2
10. Radiometric decay	2	0	2
11. Age determination by isotopes	2	0	2
12. Geochronologcial applications	2	0	2
13. Applications and advances	2	0	2
14. Revision and evaluation session	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
anding	a1	recognize the historical development of ideas and scientific breakthroughs associated with formulation of the Plate Tectonics theory,	\checkmark					
Underst	a2	assess the basic physical and geochemical processes that constrain the modern models for Earth's internal structure,	\checkmark	\checkmark		\checkmark		
wledge &	a3	demonstrate the use and importance of radiogenic isotopes in studying geological and geotectonic subjects,	\checkmark		\checkmark			\checkmark
Kno	a4	analyze theradiogenic isotope data for age and setting of formation.		\checkmark		\checkmark		
	b1	recognize the evolution of Eart's crust in view of the Plate Tectonics theory,	\checkmark		\checkmark	\checkmark	\checkmark	
s	b2	envisage the geometry of plate margins and evolution of continents and oceans along the time,		\checkmark		\checkmark	\checkmark	
tual Skill	b3	explain the basic and advanced research points related to the evolution of Plate Tectonics,						
Intellec	b4	investiagte the mutual relationship between radiogenic isotope geochemistry of the crustal rocks and their evolution along the Earth's history.		V	\checkmark	\checkmark		
	b5	recount the different systems of selected radiogenic isotopes, e.g., U (Th/Hf), K/Ar, and Rb/Sr.	\checkmark			\checkmark	\checkmark	\checkmark
onal	c1	reconstruct the geotectonic setting using structure and geochemical data,	\checkmark		\checkmark			
. professi lls	c2	analyze bulk rock geochemical and radiogenic isotope data for the geotectonic settings		\checkmark				
al and ski	c3	use the different software and apply methods to solve geological problems	\checkmark		\checkmark	\checkmark		\checkmark
Practic	c4	interpret the isotope value data of a rock or ore deposit for the setting of a specific orogeny		\checkmark		\checkmark		
leral ills	d1	review available data from publication and other resources	\checkmark		\checkmark			
Gen Ski	d2	analyze the results in a meaningful readable final form						

d3	work in team or mosaic a piece of work with	2	2	
	other peers	v	v	

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Knowledge and			Intellectual skills			Practical and				General skills					
	un	derst	tandi	ng					professional skills			ssional skills				
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to	Х						Х						Х			
Geotectonics and plate																
boundaries																
Internal structure of the		Х				Х					Х					Х
Earth																
Continental drift and				Х												
ocean floor spreading																
Oceanic ridges and			Х													
transform faults																
Subduction zones, and				Х										Х		
collisional sutures																
Impact of the plate						Х				Х						
tectonics																
Plate tectonics and		Х						Х						Х		
metallogenic provinces																
Introduction to			Х										Х			
radiogenic isotopes of																
elements																
Atom structure and		Х							Х						Х	
decay																
Radiometric decay	Х						Х					х		х		

Age determination by		Х		X				Х			
isotopes											
Geochronological	Х					х				Х	
applications											
Applications and	Х										Х
advances											
Revision and evaluation		Х							Х		
session											

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s) and approved by the department council. Course files uploaded by the instructor on the university web site.

6-2 Required books.

None

6-13 Recommended books

Plate tectonics and crustal evolution 1996, Kent C. Kondie, Printice-Hall, inc.

Microtectonics by Passchier C. W. and Trouw R. A. J. 1996.

Radiometric dating of rocks and minerals by Christopher T. Harper. Dowden, Hutchinson & Ross, 1973

6-14 Periodicals, Web sites, etc.

Geotectonics

http://www.springer.com/earth+sciences+and+geography/geology/journal/11479 http://www.platetectonics.com/book/

7- Facilities required for teaching and learning:

Power point presentations Data show Sound system to ensure the ease listening PCs and software

Course coordinators:	Prof. Zakaria Hamimi Prof. Rifaat Osman
Head of the Department:	Prof. Gamal El Qot
Date:	2022/2023
Course Specification 431 G: Ore microscopy and petrology

A. Affiliation			
Relevant program:	B.Sc. in G	eology	
Department offering t	he program:	Departme	ent of Geology
Department offering t	he course:	Departme	ent of Geology
Academic year/level:		Fourth le	vel
B. Basic information			
Title: Ore microscopy petrology	and	Code:431G	Year/level: Fourth level
Teaching Hours		Lectures ?	Tutorial: ()

eaching Hours:	Lectures: 2	Tutorial: 0
	Practical:2	Total:4 h/week

C. Professional information

1. Course Learning Objectives:

This course is designed to introduce students to definition and classification of ore deposits. Investigation of the characteristics, genesis and distinctions of ore minerals, their optical properties and genetic associations is a prime purpose. The students are to be trained on identification of ores in the field, and the global distribution of the ore deposits and its controls and chronology.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should be able to:

- **a1.** explain the major ore deposit types and industrial minerals and predict how these will affect exploration, evaluation and exploitation,
- **a2.** investigate the role of ore bearing fluids in the genesis of ore deposits and identify and explain the major controls to mineralization for a variety of deposit types,
- **a3.** recognize the mineralogical and petrological signatures of major ore deposits and industrial mineral types, identify and analyze their assemblages, textural relationships and parageneses and relate these to the mode and timing of formation,
- **a4.** demonstrate the importance of making scientific observations, recognizing similarities between these and stated models and using these observations to determine or support complex geological interpretations.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** analyze the geologic and tectonic setting of the different ore deposits,
- b2. assess mineral paragenesis and textures and reconstruct the ore genesis,

- **b3.** apply mineral association criteria to the setting and genesis of ore textures and their evolution,
- **b4.** investigate the distribution of ores and industrial materials in the various rock assemblages,
- **b5.** inspect examples of the Egyptian ores.

c. Practical and professional skills:

Successful students should be professionally able to:

- **c1.** identify the ore minerals and the associated criteria in the field and in hand specimen,
- **c2.** acquire the basic concepts of ore petrography is given, which forms the base for an integrated study of an ore deposit,
- c3. characterize each type of the ore deposits, occurrence, setting and mineralogy,
- **c4.** detect the paragenetic and evolutionary relationships using the microscopic features.

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** review available literature from textbooks, published maps, publications and other resources,
- **d2.** interpret the various types of data and observations into information using software and formulate the results in a readable final form,
- **d3.** contribute significantly to the scientific skills and attitudes of his/her peers.
- **d4.** cooperate and work in team smoothly and manage the time while going to the targeted goals.

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction to ore microscopy	2		2
2. Ore minerals	2		2
3. Classification of the ore deposits	2		2
4. Ore deposits in a global tectonic context	2		2
5. Ore-forming processes	2		2
6. Syngenetic ore deposits	2		2
7. Epigenetic ore deposits	2		2
8. Surficial and supergene ore-forming processes	2		2
9. Exploration vectors for ore deposits	2		2
10. Genetic studies of the ore deposits	2		2
11. Controls of ore deposit formation and distribution	2		2
12. Hydrothermal alteration	2		2
13. Examples from the Egyptian ore deposits	4		4
14. Revision and evaluation session	2		2
Total hours	28		28

3. Contents

4 - Teaching and Learning methods:

	I	ntended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1.	explain the major ore deposit types and industrial minerals and predict how these will affect exploration, evaluation and exploitation,	~					
rstanding	a2.	investigate the role of ore bearing fluids in the genesis of ore deposits and identify and explain the major controls to mineralization for a variety of deposit types,	✓	V		✓		
ínowledge & Unders	a3.	recognize the mineralogical and petrological signatures of major ore deposits and industrial mineral types, identify and analyze their assemblages, textural relationships and parageneses and relate these to the mode and timing of formation,	\checkmark		~			~
I	a4.	demonstrate the importance of making scientific observations, recognizing similarities between these and stated models and using these observations to determine or support complex geological interpretations		\checkmark		~		
	b1.	analyze the geologic and tectonic setting of the different ore deposits	\checkmark		~	~	~	
kills	b2.	assess mineral paragenesis and textures and reconstruct the ore genesis		\checkmark		\checkmark	~	
lectual S	b3.	apply mineral association criteria to the setting and genesis of ore textures and their evolution	\checkmark			\checkmark		
Intel	b4.	investigate the distribution of ores and industrial materials in the various rock assemblages		\checkmark	\checkmark	\checkmark		
	b5.	inspect examples of the Egyptian ores	\checkmark			\checkmark	\checkmark	\checkmark
br le	c1.	identify the ore minerals and the associated criteria in the field and in hand specimen	\checkmark		\checkmark			
actical ar rofession: skills	c2.	acquire the basic concepts of ore petrography is given, which forms the base for an integrated study of an ore deposit,	\checkmark	\checkmark		\checkmark		
Pr pı	c3.	characterize each type of the ore deposits, occurrence, setting and mineralogy,	\checkmark		\checkmark	\checkmark		\checkmark

	c4.	detect the paragenetic and evolutionary relationships using the microscopic features.		√		\checkmark	
	d1.	review available literature from textbooks, published maps, publications and other resources,	\checkmark		\checkmark		\checkmark
al Skills.	d2.	interpret the various types of data and observations into information using software for a readable final form,	\checkmark				
Gene	d3.	contribute significantly to the scientific skills and attitudes of his/her peers.	\checkmark	\checkmark		\checkmark	
	d4.	cooperate and work in team smoothly and manage the time while going to the targeted goals.			\checkmark		\checkmark

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and In			Inte	Intellectual skills			Practical and				General skills			
	un	ders	tandi	ng					professional skills							
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to ore	X						X						Х			
microscopy																
Ore minerals		х				X					х					Х
Classification of the ore				Х												
deposits																
Ore deposits in a global			X													
tectonic context																
Ore-forming processes				X										Х		
Syngenetic ore deposits						X				Х						
Epigenetic ore deposits		Х						Х						Х		

Surficial and supergene			Х							Х			
ore-forming processes													
Exploration vectors for		х					Х					Х	
ore deposits													
Genetic studies of the	Х					Х			Х		Х		
ore deposits													
Controls of ore deposit			Х		Х					Х			
formation and													
distribution													
Hydrothermal alteration		х						х				Х	
Examples from the		х											Х
Egyptian ore deposits													
Revision and evaluation			X								X		
session													

6. List of references:

6.1. Course notes

Course notes prepared by the course instructor(s) and approved by the department council.

6.2. Required books.

None

6.3. Recommended books

Ore Microscopy and Ore Petrography Author: James R. Craig and David J. Vaughan Publisher: John Wiley and Sons (WIE); 2nd edition (May 31, 1995), 448 pages Robb, L. (2005) Introduction to Ore-Forming Processes. Blackwell Publishing <u>http://www.smenet.org/opaque-ore/IX_t_0.htm</u>

6.4. Periodicals, Web sites, etc.

Economic Geology Ore Geology Reviews Mineralium Deposita

7. Facilities required for teaching and learning:

Data show: Power point presentations Sound system to ensure the ease listening Polished and thin sections of ore deposits Reflected-light microscopes

Course coordinator:	Asst.Prof. Adel Maady Asst.Prof. Moustafa M. Mogahed
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 433 G: Geochemistry

A. Affiliation			
Relevant program:	B.Sc. in Geology		
Department offering the	program:	Departm	ent of Geology
Department offering the	course:	Departm	ent of Geology
Academic year/level:		Fourth le	vel
B. Basic information			
Title: Geochemistry	Code:4.	33G	Year/level: Fourth level

Lectures: 2

Practical:2

C. Professional information

Teaching Hours:

1. Course Learning Objectives:

This course is designed to enable students to demonstrate the chemical aspects of the earth's material and how they were generated. This accomplishment can be based on a good understanding of the basic principles of geochemical processes. Methods and techniques used in geochemical studies are important for a wide variety of applications.

Tutorial: 0

Total:4 h/week

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the students should be able to:

- a1. recognize the appropriate mathematical strategies for solving geochemical problems,
- **a2.** recall the structure and chemistry of the rock-forming minerals and be familiar with methods for their study,
- **a3.** relate the major chemical processes involved in water-rock reactions in the Earth's crust,
- a4. report the origin of earth's crust and mantle rocks and related mineral resources,
- a5. define oversimplifications in geochemical models.

b. Intellectual skills:

Successful students will be able to:

- **b1.** review the quality of data generated by analytical geochemical techniques,
- **b2.** present and summarise geochemical data in graphical and tabular forms, and critically appraise its significance, using appropriate statistical techniques where applicable,
- b3. discuss the value and limitations of existing information on a given subject,
- **b4.** formulate key hypotheses, using logical and consistent quantitative or qualitative arguments to characterize the investigated rocks,
- **b5.** draw logic conclusions and identify appropriate avenues for further study.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- **c1.** evaluate the principles, applications and limitations of the main analytical techniques used in geochemistry,
- **c2.** experiment practical experience of a range of modern geochemical techniques, and advanced experience of some of these techniques,
- **c3.** analyse the geochemical data and quality of the analytical data generated by different Techniques,
- **c4.** reproduce data by calculation of ratios and norm values from geochemical data using specialized software.

d. General skills:

Successful students will be able to:

- **d1.** communicate by means of well-prepared, clear and confident presentations and concise and grammatical written documents,
- **d2.** diagnose other information sources skilfully and appropriately and to be able to cite them appropriately,
- d3. conclude facts from geochemical data, such as origin and tectonic setting of rocks,
- d4. organise and prioritise work activities in order to meet deadlines,
- **d5.** work independently, with initiative, and also in teams.

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and course definition/objective	2		2
2. Structure and composition of the Earth's Interior	2		2
3. Primary geochemical differentiation of the Earth	2		2
4. Geochemical classification of elements	2		2
5. Crystal chemistry	2		2
6. Atomic substitutions	2		2
7. Geochemistry of igneous rocks	2		4
8. Geochemical environment	2		2
9. Hydrothermal alteration geochemistry	2		2
10. Geochemistry of metamorphic rocks	2		2
11. Chemical composition of meteorites.	2		2
12. Uses of stable isotope geochemistry.	2		2
13. The geochemical cycle	2		2
14. Revision and open questions	2		2
Total	28		28

4. Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical session	Problem solving	Brain storming
Iding	a1.	recognize the appropriate mathematical strategies for solving geochemical problems,	\checkmark					
Inderstar	a2.	recall the structure and chemistry of the rock-forming minerals and be familiar with methods for their study,	~	~		\checkmark		
dge & U	a3.	relate the major chemical processes involved in water-rock reactions in the Earth's crust,	\checkmark		~			~
nowle	a4.	report the origin of earth's crust and mantle rocks and related mineral resources,		\checkmark		\checkmark		
K	a5.	define oversimplifications in geochemical models.	\checkmark		\checkmark	\checkmark	\checkmark	
	b1.	review the quality of data generated by analytical geochemical techniques,		\checkmark		\checkmark	\checkmark	
kills	b2.	present and summarise geochemical data in graphical and tabular forms, and critically appraise its significance, using appropriate statistical techniques where applicable.	~			√		
ctual	b3.	discuss the value and limitations of existing information on a given subject,		\checkmark	\checkmark	\checkmark		
Intelle	b4.	formulate key hypotheses, using logical and consistent quantitative or qualitative arguments to characterize the investigated rocks,	~			√	~	~
	b5.	draw logic conclusions and identify appropriate avenues for further study.	\checkmark		~			
l skills	c1.	evaluate the principles, applications and limitations of the main analytical techniques used in geochemistry,	\checkmark	\checkmark		\checkmark		
rofessional a	c2.	experiment practical experience of a range of modern geochemical techniques, and advanced experience of some of these techniques,	~		~	\checkmark		~
cal and J	c3.	analyse the geochemical data and quality of the analytical data generated by different Techniques,		\checkmark		\checkmark		
Practi	c4.	reproduce data by calculation of ratios and norm values from geochemical data using specialized software.	\checkmark		\checkmark			\checkmark

	d1.	communicate by means of well-prepared, clear, and confident presentations and concise and grammatical written documents,	~					
Skills	d2.	diagnose other information sources skilfully and appropriately and to be able to cite them appropriately,	\checkmark	\checkmark		\checkmark		
General	d3.	conclude facts from geochemical data, such as origin and tectonic setting of rocks,	\checkmark		\checkmark			\checkmark
	d4.	organise and prioritise work activities in order to meet deadlines,		\checkmark		\checkmark		
	d5.	work independently, with initiative, and also in teams			\checkmark	\checkmark	\checkmark	

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and				Intellectual skills				Practical and				General skills		
	un	understanding				professional skills										
	a1	1 a2 a3 a4			b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and course	X						Х						Х			
definition/objective																
Structure and		Х				Х					Х					X
composition of the																
Earth's Interior																

Primary geochemical				Х										
differentiation of the														
Earth														
Geochemical			Х											
classification of														
elements														
Crystal chemistry				Х								х		
Atomic substitutions					X				Х					
Geochemistry of igneous		х					Х					х		
rocks														
Geochemical			х								Х			
environment														
Hydrothermal alteration		х						Х					х	
geochemistry														
Geochemistry of	х					х				х		х		
metamorphic rocks														
Chemical composition of			х		х						Х			
meteorites.														
Uses of stable isotope		х							Х				х	
geochemistry.														
The geochemical cycle		Х												X
Revision and open			х									Х		
questions														

6. List of references:

6.1. Course notes

Course notes prepared by the course instructor(s) and approved by the department. Course files uploaded to the instructor's home page on the university web.

6.2. Required books.

None

6.3. Recommended books

Essentials of Geochemistry Author: John Victor Walther Publisher: Jones & Bartlett Publishers; 2 edition (November 21, 2008), 700 pages.

Principles of Igneous and Metamorphic Petrology Author: Anthony Philpotts, Jay Ague. Publisher: Cambridge University Press; 2nd edition (February 2, 2009), 686 pages

6.4. Periodicals, Web sites, etc.

Geochemistry http://www.springer.com/earth+sciences+and+geography/geology/journal/11479 7. Facilities required for teaching and learning:

Power point presentations Data show Sound system to ensure the ease listening PCs and software Electronic library

Course coordinators:	Prof. Dr. Abdelazim Mehanna Asst.Prof. Moustafa M. Mogahed
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 434 G: Economic Geology

A. Affiliation			
Relevant program: B.Sc	. in Geol	ogy	
Department offering the pro Department offering the con Academic year/level:	ogram: 1rse:	Departr Departr Fourth	nent of Geology nent of Geology level
B. Basic information			
Title: Economic Geology	Code	:434G	Year/level: Fourth level
Teaching Hours:	Lectu	ires: 2	Tutorial: 0
2	Pract	ical:2	Total:4 h/week

C. Professional information

1. Course Learning Objectives:

This course is designed to introduce students to classification of earth resources in terms of their being biological or physical, renewable or non-renewable. The students will investigate formation, discovery, extraction and use of physical resources with respect to ores, mineral and rock resources. The overall goal is to make students familiarized with the fundamentals of mineral resources and their geological context.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of this course, the students will be able to:

- **a1.** recognizewide variety of geological environments, and emphasis their relationship with petrological and geochemical processes and geological settings,
- **a2.** recite the theory of light reflection and optical properties of ore minerals under the microscope,
- **a3.** identify each type of the ore deposits, occurrence, setting and mineralogy,
- **a4.** revealboth in theory (mathematical and physical background) and in practice (applications and training) how earth resources contribute to the industry and deveopment,
- **a5.** recognize the methods and techniques used for mineral prospection and extraction.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** identify the different ore minerals in hand specimen and under the microscope,
- **b2.** assess mineral paragenesis and textures and reconstruct the ore genesis,
- b3. analyze the setting and genesis of ore textures and their evolution,
- **b4.** investigate the distribution of ores and industrial materials in the various rock assemblages,
- **b5.** review the economics of ore minerals, with emphasize on the Egyptian ores.

d. practical and professional skills:

Successful students should be professionally able to:

- **c1.** investigate ore minerals and associated criteria in the field and in hand specimen,
- c2. characterize each of the mineral deposits and their geologic settings,
- **c3.**use the reflected light microscope to identify the ore minerals and textures for genetic aspects,
- **C4. draw** interpretations of the various geologic, mineralogical and economic issues for sake of evaluating ore deposits.

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** review available literature from textbooks, published maps, publications and other resources,
- **d2.** interpret the various types of data and observations into information using software and formulate the results in a readable final form,
- d3. apply knoweldge and training in probem solving and new findings,
- **d4.** cooperate and work in team smoothly and manage the time while going to the targeted goals.

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction and course structure	2		2
2. Earth and earth resources	2		2
3. Mineral deposits and their geologic	2		2
settings			
4. Types of mineral deposits and their	2		2
economics			
5. Distribution of ore deposits in the globe	2		2
6. Formation models of ore deposits	2		2
7. Magma and magmatic ore deposits	2		2

8. Ore deposits in convergent tectonic setting	2	2
9. Ore deposits in divergent tectonic setting	2	2
10.Sedimentary ore deposits	2	2
11.Study of the ore deposits – geologic view	2	2
12. Tools applied to exploration for ore	2	2
deposits		
13. Egyptian ore deposits, distribution and	2	2
genetic issues		
14. Revision and evaluation/improvement	2	2
plans		
Total hours	28	28

4. Teaching and Learning methods:

	In	tended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
ling	a1.	recognize wide variety of geological environments, and emphasis their relationship with petrological and geochemical processes and geological settings,	\checkmark					
derstand	a2.	recite the theory of light reflection and optical properties of ore minerals under the microscope,	\checkmark	\checkmark		\checkmark		
& Un	a3.	identify each type of the ore deposits, occurrence, setting and mineralogy,	\checkmark		\checkmark			\checkmark
Knowledge .	a4.	reveal both in theory (mathematical and physical background) and in practice (applications and training) how earth resources contribute to the industry and deveopment,		\checkmark		~		
	a5.	recognize the methods and techniques used for mineral prospection and extraction.	~		\checkmark	~	~	

	h 1	identify the different or minerals in						
	01.	hand specimen and under the		\checkmark		\checkmark	\checkmark	
		microscope		·		·	·	
	h7	nicroscope,						
ills	02.	assess initial paragenesis and	1			1		
Sk		and reconstruct the ore	•			v		
lal	h2	genesis,						
ecti	05.	analyze the setting and genesis of ore textures and their evolution		\checkmark	\checkmark	\checkmark		
elle	h1	investigate the distribution of organized						
Int	04.	and industrial materials in the various	\checkmark			\checkmark	\checkmark	\checkmark
		rock assemblages	·			·	·	·
	h5	review the aconomics of ore minerals						
	05.	with emphasize on the Egyptian ores	\checkmark		\checkmark			
	c1	investigate or minerals and						
I	C 1.	associated criteria in the field and in	\checkmark	\checkmark		\checkmark		
anc		hand specimen	-					
ssi	c2	characterize each of the mineral						
ofe	02.	deposits and their geologic settings	\checkmark		\checkmark	\checkmark		\checkmark
pr Ils	c3.	use the reflected light microscope to						
nd skil	••••	identify the ore minerals and textures		\checkmark		\checkmark		
l ai		for genetic aspects.						
ica	c4.	draw interpretations of the various						
act		geologic, mineralogical and			/			
\mathbf{Pr}		economic issues for sake of	V		V			V
		evaluating ore deposits.						
	d1.	review available literature from						
		textbooks, published maps,			\checkmark			\checkmark
		publications and other resources,						
ills	d2.	interpret the various types of data and						
Ski		observations into information using		\checkmark		\checkmark	\checkmark	
al		software for a readable final form,						
neı	d3.	apply knoweldge and training in						
Ge		probem solving and new findings,			v			v
	d4.	cooperate and work in team smoothly						
		and manage the time while going to		\checkmark	\checkmark			\checkmark
		the targeted goals.						

5. Students' Assessment Methods and Grading:

5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,

- 5.2. Assignments to assess the student independent work,
- **5.3.** Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	ILOs a1-3, b1-b3, c1-	Seventh week	6 %
	c2		
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	K	now	ledg	ge	I	ntell	ectu	al	Practical and				General skills			
		ar	nd			skills			professional							
	uno	derst	tand	ing					skills							
	a	ı a a a b			b	b	b	b4	c1	c2	c	c4	d1	d2	d	d
	1	2	3	4	1	2	3				3				3	4
Introduction and	X						X						X			
course structure																
Earth and earth		Х				Х					x					X
resources																
Mineral deposits and				Х												
their geologic																
settings																
Types of mineral			Х													
deposits and their																
economics																
Distribution of ore				Х										Х		
deposits in the globe																
Formation models of						Х				X						
ore deposits																
Magma and		X						X						Х		
magmatic ore																
deposits																

Ore deposits in			Х							X			
convergent tectonic													
setting													
Ore deposits in		Х					Х					Х	
divergent tectonic													
setting													
Sedimentary ore	х					Х			Х		Х		
deposits													
Study of the ore			Х		Х					Х			
deposits – geologic													
view													
Tools applied to		Х						Х				Х	
exploration for ore													
deposits													
Egyptian ore		Х											Х
deposits, distribution													
and genetic issues													
Revision and			Х								Х		
evaluation/improvem													
ent plans													

6. List of references:

6.1. Course notes

Course notes prepared by the course instructor(s) and approved by the department council.

6.2. Required books.

None

6.3. Recommended books

Walter L. Pohl., 2011. Economic Geology: Principles and Practice, ISBN: 978-1-4443-3663-4, 680 pages, Wiley-Blackwell The principles of economic geology by Emmons, William H. (1918) https://archive.org/details/principlesofecon00emmoiala

6.4. Periodicals, Web sites, etc.

Economic Geology Ore Geology Reviews Mineralium Deposita <u>www.segweb.org</u>

7. Facilities required for teaching and learning:

Data show &Power point presentations Sound system to ensure the ease listening Equipped laboratory **Course coordinator:** Assist Prof. Abdelazim A. Rashwan Assist Prof. Adel Maady

Head of the Department:	Prof. Dr. Gamal El Qot
Approval date:	2022/2023

Course Specification 435 G: Mineral prospection and Raw materials

A. Affiliation		
Relevant program: B.Sc. in	Geology Program	
Department offering the program: Department offering the course: Academic year/level:	Departn Departn Fourth l	nent of Geology nent of Geology evel
B. Basic information		
Title: Mineral prospection and raw materials	Code:435G	Year/level: Fourth level
Teaching Hours:	Lectures: 2 Practical:2	Tutorial: 0 Total: 4 h/week

C. Professional information

1. Course Learning Objectives:

This course is designed to introduce students to principles and processes of mining and exploration of earth resources. One important goal is to train students on recognition of raw materials and industrial minerals in the field and hand specimen, and to add significantly to the students 'basic and advanced knowledge on the different methods used in exploration for geological raw and industrial material, as well as relationships between resources exploitation and the environmental issues.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- **a1.** realize the principals of mineral exploration and branches of geological and mineralogical sciences,
- **a2.** identify the different industrial materials to petrological and geochemical environment,

a3.describe each of the commonly used mining methods used for mineral extraction,

- **a4.**reciteboth in theory (mathematical and physical background) and in practice (applications and training) how to map, sample and evaluate industrial minerals or raw materials,
- **a5.** recognize the methods and techniques used for mineral prospection and extraction.

b. Intellectual skills:

Successful students in this course should be able to.

- **b1.** identify the different minerals in hand specimen and under the microscope,
- b2. assess mineral paragenesis and textures and reconstruct the ore genesis,
- b3. analyze the setting and genesis of ore textures and their evolution,
- **b4.** study the distribution of ores and industrial materials in the various rock assemblages,

b5. recognize the economics of minerals and rocks, with emphasize on the Egyptian resources.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. identify the different minerals in hand specimen and under the microscope,
- **c2.** characterize each of the mineral assemblages and rock clans and their geologic settings,
- **c3.** demonstrate the economic importance of minerals and rocks and how a feasibility study can be accomplished,
- **c4.** analyze the various geologic, mineralogical and economic issues of a potential raw material or mineral deposit.

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** assess a case study in Egypt, i.e., working mines or quarries,
- **d2.** present results and analyze data using statistical software and formulate the results in a readable final form,
- d3. apply knoweldge and training in probem solving and new findings.
- **d4.** work smoothly in team and manage the time while going to the targeted goals.

3. Contents

Торіс	Lecture hrs	Tutorial hrs	Practical hrs
1. Introduction to mineral exploration methods	2		2
2. Industrial minerals and rocks- geologic settings	2		2
3. Types of industrial minerals	2		2
4. Methods used in mineral exploration	2		2
5. Metallic and non-metallic minerals	2		2
6. Mapping and sampling	2		2
7. Feasibility studies	2		2
8. Industrial materials marketing	2		2
9. Geochemical exploration methods	2		2
10. Geophysical exploration methods	2		2
11. Statistical methods used in exploration	2		2
12. Work opportunities in mineral exploration	2		2
13. Important minerals and rocks in Egypt	2		2
14. Revision and course evaluation	2		2
Total hours	28		28

4. Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
ling	a1.	realize the principals of mineral exploration and branches of geological and mineralogical sciences,	\checkmark					
stand	a2.	identify the different industrial materials to petrological and geochemical environment.		\checkmark	\checkmark			
Jnder	a3.	describe each of the commonly used mining methods used for mineral extraction	\checkmark	\checkmark	\checkmark			
Knowledge & U	a4.	recite both in theory (mathematical and physical background) and in practice (applications and training) how to map, sample and evaluate industrial minerals or raw materials,	~				~	~
	a5.	recognize the methods and techniques used for mineral prospection and extraction.			\checkmark	\checkmark		
	b1.	identify the different minerals in hand specimen and under the microscope,	\checkmark					
kills	b2.	assess mineral paragenesis and textures and reconstruct the ore genesis,				\checkmark	\checkmark	\checkmark
tual S	b3.	analyze the setting and genesis of ore textures and their evolution.	\checkmark	\checkmark	\checkmark	\checkmark		
ntellect	b4.	study the distribution of ores and industrial materials in the various rock assemblages,		\checkmark				
IJ	b5.	recognize the economics of minerals and rocks, with emphasize on the Egyptian resources.	\checkmark	\checkmark	\checkmark			
nal	c1.	identify the different minerals in hand specimen and under the microscope,				\checkmark	~	
professio Is	c2.	characterize each of the mineral assemblages and rock clans and their geologic settings,	\checkmark				\checkmark	\checkmark
cal and] skill	c3.	demonstrate the economic importance of minerals and rocks and how a feasibility study can be accomplished,				\checkmark		
Practi	c4.	analyze the various geologic, mineralogical and economic issues of a potential raw material or mineral deposit.	\checkmark			\checkmark		
ral Is	d1.	assess a case study in Egypt, i.e., working mines or quarries, 0				\checkmark	\checkmark	
Gene Skill	d2.	present results and analyze data using statistical software and formulate the results in a readable final form,	\checkmark					

d3.	apply knoweldge and training in probem solving and new findings.		\checkmark	\checkmark	\checkmark	\checkmark
d4.	work smoothly in team and manage the time while going to the targeted goals.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	ILOs a1-3, b1-b3, c1-c2	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
		Total	100 %

-Course matrix

contents	Knowledge and understanding		and ng	Intellectual skills			Practical and professional skills			General skills						
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to mineral exploration methods	х						х						Х			
Industrial minerals and rocks- geologic settings		Х				Х					X					Х
Types of industrial minerals				X												
Methods used in mineral exploration			х													
Metallic and non- metallic minerals				X										Х		
Mapping and sampling						X				X						
Feasibility studies		X						Х						Х		
Industrial materials marketing			х										Х			
Geochemical exploration methods		X							Х						Х	
Geophysical exploration methods	X						Х					Х		Х		
Statistical methods used in exploration			X			Х							Х			
Work opportunities in mineral exploration		X								X					Х	
Important minerals and rocks in Egypt		X														X
Revision and course evaluation			X											X		

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) and approved by the department council.

6.2. Required books.

None.

6.3. Recommended books

- Marjoribanks, R, 1997. Geological Methods in Mineral Exploration and Mining, Chapman & Hall, London, 2nd ed. 2010, XV, 238 p.
- Tatiya, R., 2005. Surface and underground excavations: methods, techniques and equipment, Taylor & Francis, ISBN 90-5809-627-0

6.4. Periodicals, Web sites, etc.

Economic Geology Ore Geology Reviews Journal of Geochemical Exploration

7. Facilities required for teaching and learning:

Data show Digital movies of operating mines and tools used in exploration. Sound system to ensure the ease listening

Course coordinator:	Assist Prof. Adel Maady Assist Prof. Moustafa M. Mogahed
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification 436 G: Introduction to Medical Geology and Volcanology

A. AIIIIIation		
Relevant program: B. Sc.	in Geology	
Department offering the program	n: Departme	ent of Geology
Department offering the course:	Departme	ent of Geology
Academic year/level:	Fourth le	vel
B. Basic information		
Title: Introduction to Medical Geology and Volcanology	Code:436 G	Year/level: Fourth level
Teaching Hours:	Lectures: 2	Tutorial: 0
C	Practical:2	Total:4 h/week

C. Professional information

A CC'1! - 4! - --

1. Course Learning Objectives:

This course Focus on the emerging specialty discipline of medical geology, the study of the effect of geological phenomena on animal and human health. Also targeted area applications of geochemistry to environmental health issues, geospatial analysis as a tool in epidemiology, health hazards associated with volcanic eruptions, global dust flux and respiratory problems, impacts of radon-arsenic-selenium-mercury-iodine on physiological function, carcinogenic associations with coal and fibrous minerals, geological effects on animal health, and geophagy (human ingestion of soil materials as a dietary supplement).Study of volcanic processes, eruptive products and their mechanism of formation, monitoring of active volcanoes, volcanic hazards, and the environmental impact of volcanism.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should be able to:

- **a1.**realize the definition of risk and what factors are considered in determining the degree of risk associated with a natural hazard.
- **a2.**recognize research a current environmental geology issue, develop an opinion based on scientific evidence, and defend that opinion in written and oral format.
- **a3.** compose a management plan for mitigation of a given geologic hazard. recognize uses of aerial photography in geological mapping and surveying,
- a4. explain how and why volcanoes erupt,
- **a5.**describe and illustrate spatial and temporal variation in volcanic deposits and describe volcanic facies,

a6.recoginze volcanological facies to reconstruct volcanic histories.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1** explain a) the conditions conducive to the occurrence of and b) the specific hazards resulting from the geologic features and processes covered in this course, including soils, earthquakes, volcanoes, rivers and floods, landslides,
- **b2.**assess landslide hazards based on geologic data, topographic maps, aerial photos and field observations,
- **b3.** Construct an earthquake hazard map and conduct a flood-frequency analysis and be able to interpret flood-frequency graphs,

b4.to describe the relationship between volcanic landforms, deposits, and processes,

b5. identify, describe volcanic rocks and interpret their origin,

b6.review volcanic rocks in a plate tectonics framework.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- **c1.**construct a written environmental assessment of a specific geologic hazard, using original scientific observations,
- **c2.** conduct an oral presentation of an original environmental assessment and management plan, using scientific evidence to defend conclusions,
- **c3.**discuss the benefits and limitations of geological interpretations based on physical volcanology observations and experiments,
- **c4.**discover the importance of physical volcanology to related fields such as petrology, geochemistry, geothermal exploration, hazard management, geological engineering.

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** collect data from books and other resources,
- **d2.** transfer the projected goals to findings using available data and software and formula the results in a easy readable final form,
- d3. realize volcanic hazards, hazard mitigation and volcanic monitoring,
- d4. evaluate and discuss primary literature on volcanology,
- **d5.** work effectively and professionally in a group cooperate and work in team smoothly while managing the time, and go to point and targeted goals.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction	2		2
2. Elemental Link Between Geosphere and Biosphere	2		2
3. Essential and Non-essential Elements with Reference	2		2
to Human Health			
4. NORM (Naturally Occurring Radioactive Material)	2		2
5. Radon	2		2
6. Dust Storms - Health Effects	2		2

7. Hydrogeology of as	2	2
8. Volcanology – Field Relations	2	2
9. Volcanic/intrusive landforms	2	2
10. Forms of volcanoes	2	2
11. Physical Properties of Magma	2	2
12. Cooling mechanisms of flows melt density	2	2
calculations		
13. Predicting volcanism versus plutonism	2	2
14. Viscosity, diffusion and melt structure	2	2
Total hours	28	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
50	a1.	realize the definition of risk and what factors are considered in determining the degree of risk associated with a natural hazard.	\checkmark					
derstanding	a2.	recognize research a current environmental geology issue, develop an opinion based on scientific evidence, and defend that opinion in written and oral format.		\checkmark	~			
edge & Und	a3.	compose a management plan for mitigation of a given geologic hazard. recognize uses of aerial photography in geological mapping and surveying,	\checkmark	✓	~			
Iw	a4.	explain how and why volcanoes erupt.	\checkmark				\checkmark	\checkmark
Kno	a5.	describe and illustrate spatial and temporal variation in volcanic deposits and describe volcanic facies,			~	\checkmark		
	аб.	recoginze volcanological facies to reconstruct volcanic histories.	~					
lectual Skills	b1.	Know and explain a) the conditions conducive to the occurrence of and b) the specific hazards resulting from the geologic features and processes covered in this course, including soils, earthquakes, volcanoes, rivers and floods, landslides.				V	✓	✓
Intel	b2.	Assess landslide hazards based on geologic data, topographic maps, aerial photos and field observations.	\checkmark	\checkmark	\checkmark	\checkmark		

	b3.	Construct an earthquake hazard map and conduct a flood-frequency analysis and be able to interpret flood-frequency graphs.		\checkmark				
	b4.	to describe the relationship between volcanic landforms, deposits, and processes.	√	√	√			
	b5.	to identify, describe volcanic rocks and interpret their origin				\checkmark	\checkmark	
	b6.	to understand volcanic rocks in a plate tectonics framework	\checkmark				\checkmark	\checkmark
cills	c1.	Construct a written environmental assessment of a specific geologic hazard, using original scientific observations.				\checkmark		
Practical and professional ski	c2.	Conduct an oral presentation of an original environmental assessment and management plan, using scientific evidence to defend conclusions.	~			~		
	c3.	Discuss the benefits and limitations of geological interpretations based on physical volcanology observations and experiments.				~	~	
	c4.	Discover the importance of physical volcanology to related fields such as petrology, geochemistry, geothermal exploration, hazard management, geological engineering.	\checkmark					
	d1.	collect data from books and other resources,		\checkmark	\checkmark			
S	d2.	transfer the projected goals to findings using available data and software and formula the results in a easy readable final form	\checkmark	\checkmark	\checkmark			
ıl Skill	d3.	to understand volcanic hazards, hazard mitigation and volcanic monitoring	\checkmark				\checkmark	\checkmark
Genera	d4.	to read, evaluate and discuss primary literature on volcanology			\checkmark	\checkmark		
Ge	d5.	to work effectively and professionally in a group cooperate and work in team smoothly while managing the time, and go to point and targeted goals.	\checkmark					

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and I			Inte	Intellectual skills			Practical and				General skills			
	un	ders	tandi	ng					pro	fessio	nal s	kills				1
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction	Х						Х						Х			
Elemental Link Between		х				х					Х					х
Geosphere and																
Biosphere																
Essential and Non-				X												
essential Elements with																
Reference to Human																
Health																
NORM (Naturally			Х													
Occurring Radioactive																
Material)																
Radon				X										X		
Dust Storms - Health						X				X						
Effects																
Hydrogeology of as		X						X						X		
Volcanology – Field			х										Х			
Relations																
Volcanic/intrusive		х							х						х	
landforms																
forms of volcanoes	Х						Х					X		X		
Physical Properties of			х			х							Х			
Magma																
cooling mechanisms of		х								х					х	
flows melt density																
calculations																
predicting volcanism		x														x
versus plutonism																
viscosity, diffusion and			x											X		
melt structure																

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6.2. Required books.

None

6.3. Recommended books

Easton, R.M. and Johns, G.W., 1986. Volcanology and mineral exploration: The application of physical volcanology and facies studies: Wood, J., Wallace, H., eds. Volcanology and mineral deposits, Ont. Geol. Surv. Misc. Pap., v. 129, p. 2-40

6.4. Periodicals, Web sites, etc.

International Journal of volcanology

7. Facilities required for teaching and learning:

Data show

Sound system to ensure the ease listening

Using a blackboard

Group discussions

Course co	ordinator:
-----------	------------

Assist Prof. Adel Maady Assist Prof. Moustafa M. Mogahed

Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification

444 G: Well logging and structure analysis

A. Affiliation							
Relevant program:	Geology B.Sc. F	rogram					
Department offering the pr Department offering the co Academic year/level:	ogram: urse:	Department of Geology Department of Geology Fourth level					
B. Basic information							
Title: Well logging and stru analysis	icture Code	444G	Year/level: Fourth level				
Teaching Hours:	Lectu	res: 2	Tutorial: 0				
	Taci		I Utal. + II/ WEEK				

C. Professional information

1 0011 /

1. Course Learning Objectives:

This course is designed to provide the students with a review of the theory and practice of Welllogging and structural analysis techniques. The students will be trained to assess how well logs are interpreted using software and structural analysis.

2. Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should be able to.

- a1. identify the borehole geophysics and the surface geophysics.
- a2. Demonstrate the objectives of well logging methods in different fields of applications.
- a3. recognize the borehole environment opposite permeable and impermeable zones and the outlines on the theories, measurements, interpretations and applications of the different types of wire line logs.
- a4. identify the different basement rocks of Egypt on basis of the plate tectonics concept
- a5. demonstrate the detection and mapping of subsurface boundaries of normally simple geometry.

b - Intellectual skills:

- On successful completion of the course, the student should be able to.
- b1. acquire lithology from Well Logs and correlate well logs to seismic data.
- b2. Use information from a variety of scientific fields for problem solving.
- b3. Recognize and apply Earth Science theories and principles.
- b4 hypothesize a range of principles and concepts in solving geological and geophysical problems.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

c1. Use the recent techniques and instrumentation of well logging for solving fossil fuel resources problems.

- c2. execute professional reports related to different well logging applications in a responsible, safe and ethical manner for preparation of his/her research articles and achieve experiments in well logging that achieve standard quality results using existing tools and methods.
- c3 investigate corections and investigation to the area under study.
- c4. use laboratory and field equipments safely for collecting and analyzing data.

d - General skills:

3 – Contents

- On successful completion of the course, the student should be able to:
- d1. apply different tools and scientific resources effectively in different tasks related. to well logging
- d2. detect geological structures, detect buried objects, groundwater and hydrocarbons d3 apply logical analysis to problem solving.

d4 apply team-working and team leadership skills to addressing complex problems.

Торіс	Lecture hours	Tutorial hours	Practical hours
WELL LOGGING		L	
1. Introduction and history of the science	2	0	2
2. Well logging procedure (Well log data acquisition and log presentation)	2	0	2
3. Borehole Environment & Recording Formats of logs	2	0	2
4. Electrical Properties of Rocks + Electrical Logs	2	0	2
 Radioactive Properties of Rocks + Radioactive Logs 	2	0	2
 Acoustic Properties of Rocks + Acoustic Logs and Other types of wire line logs 	2	0	2
7. General revision	2	0	2
STRUCTURAL ANALYSI	S	-	
8. Introduction to structural analysis	2	0	2
9. Stereographic projection	2	0	2
10. Planer structures, linear structures and transection of planes	2	0	2
11. Representation of folds and analyzing its components	2	0	2
12. Representation of faults and analyzing its components	2	0	2
13. Field relations and observations	2	0	2
14. General revision	2	0	2
TOTAL HOURS= 28			

4 - Teaching and Learning methods:

]	Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
	al	Identify the borehole geophysics and the surface geophysics	\checkmark		N	N	N	N
ling	a2	Demonstrate the objectives of well logging methods in different fields of applications		V		\checkmark		
edge & Understand	a3	Recognize the borehole environment opposite permeable and impermeable zones and the outlines on the theories, measurements, interpretations and applications of the different types of wire line logs.	V		\checkmark	V		\checkmark
Knowl	a4	Identify the different basement rocks of Egypt on basis of the plate tectonics concept				\checkmark		\checkmark
	a5	Demonstrate the detection and mapping of subsurface boundaries of normally simple geometry.	\checkmark		\checkmark	\checkmark		\checkmark
ills	b1	Acquire lithology from Well Logs and correlate well logs to seismic data	\checkmark			\checkmark	\checkmark	
ıal Sk	b2	Integrate information from a variety of scientific fields for problem solving.	\checkmark			\checkmark	\checkmark	\checkmark
ellectu	b3	Recognize and apply Earth Science theories and principles.	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Int	b4	Apply team-working and team leadership skills to addressing complex problems.		\checkmark		\checkmark		
ional	c1	Use the recent techniques and instrumentation of well logging for solving fossil fuel resources problems.	\checkmark					\checkmark
actical and profession skills	c2	Make professional reports related to different well logging applications in a responsible, safe and ethical manner for preparation of his/her research articles and Achieve experiments in well logging that achieve standard quality results using existing tools and methods.	,	V	V	V	\checkmark	V
P	c3	Investigate corections and investigation to the area under study.	\checkmark	\checkmark		\checkmark		\checkmark

	C4	Use laboratory and field equipments safely for collecting and analyzing data.			\checkmark	
Skills	d1	Apply different tools and scientific resources effectively in different tasks related to well logging	\checkmark		 \checkmark	\checkmark
neral	d2	Detect geological structures, detect buried objects, groundwater and hydrocarbons	\checkmark	\checkmark	\checkmark	\checkmark
Ge	d3	Apply logical analysis to problem solving.		\checkmark		
	d4	Apply team-working and team leadership skills to addressing complex problems.	\checkmark		\checkmark	

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and understanding				Intellectual skills			Practical and professional skills				General skills			
	a1	al a2 a3 a4 h			b1	h2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction and history	X		ue	u i	01	02	X	01			•••		X	42	40	u
Vell logging procedure		v				v					v					v
(Well log data		Λ				Λ					л					Λ
acquisition and log																
presentation)																
Borehole Environment				Х												
& Recording Formats of																
logs																
Electrical Properties of			Х													
Rocks + Electrical Logs																

Radioactive Properties				Х								Х		
of Rocks + Radioactive														
Logs														
Acoustic Properties of					х				Х					
Rocks + Acoustic Logs														
and Other types of wire														
line logs														
General revision		X					Х					Х		
Introduction to structural			х								Х			
analysis														
Stereographic projection		X						Х					X	
Planer structures, linear	Х					Х				х		х		
structures and														
transection of planes														
Representation of folds			х		х						Х			
and analyzing its														
components														
Representation of faults		Х							Х				х	
and analyzing its														
components														
Field relations and		Х												Х
observations														
General revision			Х									х		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6-2 Required books.

None

6-15 Recommended books

- Bassiouni, Z., 1994, Theory, Measurement, and Interpretation of Well Logs. SPE Textbook Series Vol. 4.
- Peters, E. J., 2012, Advanced Petrophysics. Live Oak Book Company.
- Zinszner, B. and Pellerin, F. M., 2007, A Geoscientist's Guide to Petrophysics. Editions Technip.
- Structural analysis and synthesis: S.M. Rowland, E.M. Duebendorfer and I.M. Schiefelbein.
- Park, R.G. (2005) Foundations of structural geology. Blackie & Son Limited, Chapman and Hall, New York.
- Structural geology of rocks and regions, G. Davis and S. Reynolds.
- Stereographic projection techniques in structural geology; Peter Leyshon and Richard Lisle.

6-16 Periodicals, Web sites, etc.

- Society of Petrophysicists and Well Log Analysts
- http://www.spwla.org/
- Schlumberger Oil Field Glossary
- http://www.glossary.oilfield.slb.com/

7- Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinator:	Dr. Wafaa Elshahat Afify Prof. Wael Hagag
Head of the Department:	Prof. Gamal El Qot
Date:	2022/2023
Course Specification 445 G: Photogeology and remote sensing

A-Affiliation

Relevant program:	B.Sc. in Geology	
Department offering the p	orogram:	Department of Geology
Department offering the c	ourse:	Department of Geology
Academic year/level:		Fourth level

B - Basic information

Title: Photogeology and remote	Code:445G	Year/level: Fourth level
sensing		
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical:2	Total:4 h/week

C - **Professional** information

4 – Course Learning Objectives:

This course is designed to introduce students to concepts and geological applications in remote sensing with an emphasis on aerial photography. It is aimed to familiarize students with the fundamentals of both the photogeological interpretation of air-photo stereo pairs and satellite imagery through laboratory practice and available software. Studying this course will encourage the use of large-scale air-photo stereo pairs and satellite imagery in field surveying, mapping, and site investigations.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1.review the evolution and history of photogeology and related applications,
- a2. recognize uses of aerial photography in geological mapping and surveying,
- a3. demonstrate the remote sensing applications, both in theory (mathematical and physical background) and in practice (applications and training),
- a4. analyze the data content of remotely sensed image and how to retrieve the information,
- a5. decide which remote sensing technique suites a specific problem or need.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. differentiate between different types of air-borne and space-borne images,
- b2. use the available aerial photographs and remote sensing data in practical applications,
- b3. demonstrate the basic and progressed techniques and methods to analyze remote sensing data,

- b4. recognize the different photogeological interpretation of landscape and structural features and lithofacies from conventional aerial photographs and multiband satellite (space) imagery.
- b5. relate software and hardware in aerial and space imagery.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. interpret aerial and space borne data,
- c2. analyze landforms and other geological features on aerial and satellite images,
- c3.use the different software and apply methods to solve geological problems,
- c4. contribute to developing the available techniques, software and sensors.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. collect data from books and other resources,
- d2. transfer the projected goals to findings using available data and software and formula the results in an easily readable final form,
- d3. cooperate and work in team smoothly while managing the time and go to point and targeted goals.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction to photogeology and remote sensing	2	0	2
2. Aerial photographs, stereo- pairs and satellite images	2	0	2
3. Advances in remote sensing and photogeology	2	0	2
4. Photogeological interpretation	2	0	2
5. Stereoscopy and stereomodels	2	0	2
6. Platforms and/or sensors	2	0	2
7. Elements of image interpretations	2	0	2
8. Optical sensors and radar systems	2	0	2
 Preprocessing and processing of remote sensing data 	2	0	2
10. Panchromatic, Multispectral, thermal and hyperspectral remote sensing data	2	0	2
11. Remote sensing based geological mapping	2	0	2
12. Digital image processing and interpretation	2	0	2
13. Application and project completion	2	0	2
14. Revision and course evaluation/open session	2	0	2
Total hours	28	0	28

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
gu	a1	review the evolution and history of photogeology and related applications,	X	x	0	X	0	0
standi	a2	recognize aerial photography as related to geological field mapping and surveying	х	x	0	x	х	х
ige & Under	a3	demonstrate the remote sensing applications, both in theory (mathematical and physical background) and in practice (applications and training)	х	х	0	X	X	х
nowled	a4	analyze thedata content of remotely sensed image and how to retrieve the information	х	x	0	х	0	0
Kı	a5	decide which remote sensing technique suites a specific problem or need	X	x	х	X	0	0
	b1	differentiate between different types of air- borne and space-borne images	Х	х	0	X	х	х
	b2	use the available aerial photographs and remote sensing data in practical applications	Х	0	0	X	0	0
ıal Skills	b3	demenostsate the basic and progressed techniques and methods to analyze remote sensing data	X	х	0	X	X	0
Intellect	b4	recognize the different photogeological interpretation of landscape and structural features and lithofacies from conventional aerial photographs and multiband satellite (space) imagery.	X	X	X	X	0	0
	b5	relate software and hardware in aerial and space imagery	X	х	0	X	0	0
S	c1	interpret aerial and space borne data,	0	х	х	Х	х	0
l and al skill	c2	analyze landforms and other geological features on aerial and satellite images,	Х	x	0	х	0	0
actica ession:	c3	use the different software and apply methods to solve geological problems,	X	X	0	X	X	0
Pr profi	c4	contribute to developing the available techniques, software and sensors.	X	X	0	X	0	X
ral S	d1	collect data from books and other resources,	X	X	X	X	0	0
Genei Skill	d2	transfer the projected goals to findings using available data and software and formula the results in an easily readable final form.	X	X	0	X	0	0

4 - Teaching and Learning methods:

d3	Cooperate and work in team smoothly while						
	managing the time and go to point and	х	Х	0	Х	Х	Х
	targeted goals.						

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exams to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	ILOs a1-3, b1-b3, c1-c2	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
		Total	100 %

-Course matrix

contents	Kn	Knowledge and In			Inte	Intellectual skills			Practical and				General skills			
	un	derst	tandi	ng					professional skills							
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to	Х						Х						X			
photogeology and																
remote sensing																
Aerial photographs,		Х				х					Х					х
stereo- pairs and satellite																
images																
Advances in remote				Х												
sensing and																
photogeology																
Photogeological			Х													
interpretation																
Stereoscopy and				Х										х		
stereomodels																
Platforms and/or sensors						X				х						
Preprocessing and		Х						Х						Х		
processing of remote																
sensing data																
Elements of image			Х										Х			
interpretations																
Optical sensors and radar		X							Х						Х	
systems																

Preprocessing and	х					х			Х		Х		
processing of remote													
sensing data													
Panchromatic,			х		х					Х			
Multispectral, thermal													
and hyperspectral remote													
sensing data													
Remote sensing based		х						Х				х	
geological mapping													
Application and project		х											Х
completion													
Revision and course			х								Х		
evaluation/open session													

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6-2 Required books.

None

6-17 Recommended books

Remote Sensing and Image Interpretation (4th. edition), by Lillesand, T.M.and Kiefer, R.W., John Wiley & Sons Inc.

6-18 Periodicals, Web sites, etc.

International Journal of Remote Sensing The Egyptian Journal of Remote Sensing and Space Science <u>http://gdex.cr.usgs.gov/gdex/</u>

Books and manuals on aerial photography, and the whole collection of aerials photos of Egypt available at the Geology Department.

7- Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a white board Group discussions

Course coordinator:	Prof. Maher El-Amawy
	Prof. Wael Hagag
Head of the Department:	Prof. Gamal El Qot
Date:	2022/2023

Course Specification G460: Hydrogeochemistry

A- Affiliation			
Relevant program:	B.Sc. inGeology		
Department offering the	program:	Department of Geology	
Department offering the	course:	Department of Geology	
Academic year/level:		Fourth level	
B - Basic information			

Title: Hydrogeochemistry	Code:460G
Teaching Hours:	Lectures: 2
-	Practical: 2

Year/level: Fourth level Tutorial: 0 Total:4 h/week

C - **Professional** information

1 – Course Learning Objectives:

This course is aimed at introducing students to principles and processes of geochemistry of surface and groundwater, and to train students on recognition of the main concepts of water – rocks interaction, effect of pollution, good quality drinking water and tracing the origins and the history of water.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1. explain and master fundamental qualitative and quantitative principles of hydrogeochemistry,
- a2. know how to approach and solve basic problems in the field of hydrogeochemistry,
- a3. explore locations of hydrogeochemistry data and how to use them in hydrologic investigations,
- a4. realize how hydrogeochemistry is interrelated with other natural and environmental science disciplines,
- a5. recognize the methods and techniques used in interpetation of the hydrogeochemistry data.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. identify the ability to imagine and confirm new hypotheses, new hydrogeochemistry problem descriptions, and new hydrogeochemistry methods for analyzing data.
- b2. demonstrate of the motivation to question conventional formulations of problems.
- b3. examine the setting and types of waves.
- b4. analyze the distribution and propagation of different types of waves.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1: acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,
- c2: make and record accurate observations and measurements,
- c3. analyze the various geological and structural issues of hydrogeochemistry problems,
- c4. carry out scientific research and evaluate and make use of the material so acquired,
- c5. write and construct scientific documents using appropriate styles, conventions and terminology.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. work productively with others,
- d2. communicate effectively in writing,
- d3. organize and manage working time, schedule tasks, and meet deadlines,
- d4. manage and manipulate numerical data,

d5. work safely in the laboratory and the field and to access related safety issues,

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1. Introduction	2	0	2
2. Sampling of groundwater	2	0	2
3. Field analyses and sample conservations	2	0	2
4. Accuracy of chemical analyses	2	0	2
5. Overall controls on water quality	2	0	2
6. Classification and assessment of Groundwater	4	0	4
7. Graphical presentation of analyses	6	0	6
8. Groundwater classification	6	0	6
9. Revision and Feedback	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
ge & ding	a1	explain and master fundamental qualitative and quantitative principles of hydrogeochemistry,	Х	0	х	0	0	x
wledg erstan	a2	know how to approach and solve basic problems in hydrogeochemistry,	х	х	0	0	0	0
Kno Unde	a3	explore locations of hydrogeochemistry data and how to use them in hydrologic investigations,	X	0	0	0	0	X

	a4	realize how hydrogeochemistry is interrelated with other natural and environmental science disciplines,	X	X	0	0	X	X
al Skills	b1	identify the ability to imagine and confirm new hypotheses, new hydrogeochemistry problem descriptions, and new hydrogeochemistry methods for analyzing data.	X	0	0	0	X	0
llectu	b2	demonstration of the motivation to conventional formulations of problems.	X	0	0	0	x	X
Inte	b3	analyze the setting and types of waves	Х	Х	0	0	0	Х
	b4	study the distribution and propagation of different types of waves.	X	X	0	0	0	X
l skills	c1	acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,	X	0	0	0	X	X
siona	c2	make and record accurate observations and measurements,	Х	0	0	0	X	х
profes	c3	carry out scientific research and evaluate and make use of the material so acquired,	X	х	0	0	0	х
cal and J	c4	analyze the various geological and structural issues of an hydrogeochemistry raw material or mineral deposit,	X	X	0	0	0	X
Practi	c5	write and construct scientific documents using appropriate styles, conventions and terminology	X	0	0	0	X	X
	d1	work safely in the laboratory and the field and to access related safety issues,	X	X	0	0	0	X
S	d2	organize and manage working time, schedule tasks, and meet deadlines,	Х	х	0	0	0	х
eral Skill	d3	undertake practical experimental work using appropriate equipment and instruments,	X	X	0	0	0	X
Gen	d4	work safely in the laboratory and the field and to access related safety issues,	X	X	0	0	0	X
	d5	undertake practical experimental work using appropriate equipment and instruments.	X	X	0	0	0	X

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn un	owle derst	dge a tandi	and ng	d Intellectual skills Practical and professional skills		Practical and professional skills		Gei	General skills						
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction	Х						Х						Х			
Sampling of		Х				х					Х					х
groundwater																
Field analyses and				Х												
sample conservations																
Accuracy of chemical			Х													
analyses																
Overall controls on				Х										Х		
water quality																
Classification and						Х				х						
assessment of																
Groundwater																
Graphical presentation		Х						Х						Х		
of analyses																
Groundwater			Х										Х			
classification																
Revision and Feedback		Х							Х						x	

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s) and approved by the Department council.

6-2 Required books.

None

6-19 Recommended books

Geochemistry, groundwater and pollution (eBook, 2005) Get this from a library! **Geochemistry, groundwater and pollution**. [C A J Appelo; Dieke Postma]

Physical and Chemical hydrogeology by Domenico, P.A. and Schwartz, F.W., (1990): "(eds)" Wiley, J. and Sons, inc. New York

Groundwater resource development Hamill, L. and Bell, F.G.,(1986): British Library, ISBN 0-408-01409-1, pages. 253

Groundwater Geochemistry a Practical Guide to Modeling of Natural and Contaminated quatic Systems by Broder J. Merkel Britta Planer-Friedrich Edited by Darrell Kirk Nordstrom ISBN 3-540-24195-7 Springer Berlin Heidelberg New York Library of Congress Control Number: 2004117858

6-4 Periodicals, Web sites, etc.

www.google.com & www.scincedirect.com & www.worldcat.org/

7- Facilities required for teaching and learning:

Data show: Power point presentationsSound system to ensure the ease listeningUsing a blackboardCourse coordinator:Prof. Dr. Mohamed El-Fakharany /
Dr. Nehad MahmoudHead of the Department:Prof. Dr. Gamal El Qot
2022/2023

Course Specification 461 G: Petroleum Geology

A. Affiliation			
Relevant program:	B.Sc. inG	eology	
Department offering th Department offering th Academic year/level:	e program: le course:	Departm Departm Fourth le	ent of Geology ent of Geology evel
B. Basic information			
Title: Petroleum Geolo	gy	Code:461G	Year/level: Fourth level
Teaching Hours:		Lectures: 2	Tutorial: 0
		Practical:2	Total:4 h/week

C. Professional information

1. Course Learning Objectives:

This course aims to develop advanced skills and competency in specialist petroleum geoscience disciplines, notably geology (e.g., basin analysis, sequence stratigraphy, tectonics, reservoir geology) and geophysics (e.g., seismic data acquisition/processing, 2D/3D seismic interpretation). It will encourage students to apply these skills to the full spectrum of hydrocarbon exploration and production activities (play fairway analysis, prospect evaluation, development and reservoir management) through classroom study, field work, integrated team projects and independent research and investigation.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should:

- **a1.** explain and master fundamental qualitative and quantitative principles of petroleum geology,
- a2.know how to approach and solve basic problems in the field of petroleum geology,
- **a3.**explore locations of petroleum geology data and how to use them in case investigations,
- **a4.**realize how petroleum geology is interrelated with other natural and environmental science disciplines,
- **a5.** recognize the methods and techniques used in interpetation of the petroleum geology data.

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- **b1.** identify the ability to imagine and confirm new hypotheses, new petroleum geology problem descriptions, and new petroleum geology methods for analyzing data.
- **b2.** demonstration of the motivation to question conventional formulations of problems.
- **b3.** analyze the setting and types of waves.

b4. study the distribution and propagation of different types of waves.

c. Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- **c1.** acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,
- c2. make and record accurate observations and measurements,
- **c3.** analyze the various geological and structural issues of petroleum geology problems,
- c4. carry out scientific research and evaluate and make use of the material so acquired,
- **c5.** write and construct scientific documents using appropriate styles, conventions and terminology.

d. General skills:

On successful completion of the course, the student should be able to:

- **d1.** work productively with others,
- d2. communicate effectively in writing,
- d3. organize and manage working time, schedule tasks, and meet deadlines,
- d4. manage and manipulate numerical data,

d5. work safely in the laboratory and the field and to access related safety issues,

3. Contents

Tonic	Lecture	Tutorial	Practical
Торк	hours	hours	hours
1.Introduction: what is petroleum? Geologic factors	2		2
2. Porosity and permeability in sedimentary rocks	2		2
3. Burial Histories; Burial and diagenesis	2		2
4.Student-led discussions of case studies.	2		2
5.Paleohydrology in sedimentary basins	2		2
6.Reservoirs and traps	2		2
7.Source Rocks; organic geochemistry of oil and gas	2		2
8.Diagenesis, catagenesis, and thermal markers	2		2
9.Basin Analysis I: basin formation and types	2		2
10. Sequence stratigraphy and basin analysis	2		2
11. Drilling and geophysical logging methods	2		2
12. Student presentations.	2		2
13. Basin analysis II: primary and secondary migration	2		2
14. Wrap-up and review	2		2
Total hours	28		28

4. Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations	Discussions & Seminars	Practical	Problem solving	Brain storming
	a1.	explain and master fundamental qualitative and quantitative principles of petroleum geology,	\checkmark					
lge & nding	a2.	know how to approach and solve basic problems in the field of petroleum geology,		\checkmark	\checkmark			
Knowled Understa	a3.	explore locations of petroleum geology data and how to use them in hydrologic investigations,	\checkmark	\checkmark	~			
	a4.	realize how petroleum geology is interrelated with other natural and environmental science disciplines,	\checkmark				\checkmark	\checkmark
l Skills	b1.	identify the ability to imagine and confirm new hypotheses, new petroleum geology problem descriptions, and new petroleum geology methods for analyzing data.			~	\checkmark		
ectual	b2.	demonstration of the motivation to question conventional formulations of problems.	\checkmark					
ntell	b3.	analyze the setting and types of waves				\checkmark	\checkmark	\checkmark
Ι	b4.	study the distribution and propagation of different types of waves.	\checkmark	\checkmark	~	\checkmark		
l skills	c1.	acquire substantial quantities of information, process it effectively, and draw appropriate conclusions,		\checkmark				
siona	c2.	make and record accurate observations and measurements,	\checkmark	\checkmark	~			
orofes	c3.	carry out scientific research and evaluate and make use of the material so acquired,				\checkmark	\checkmark	
cal and p	c4.	analyze the various geological and structural issues of a petroleum geology raw material or mineral deposit,	√				~	✓
Practi	c5.	write and construct scientific documents using appropriate styles, conventions and terminology				\checkmark		
lls	d1.	work safely in the laboratory and the field and to access related safety issues,	\checkmark			\checkmark		
ral Ski	d2.	organize and manage working time, schedule tasks, and meet deadlines,				\checkmark	\checkmark	
Gene	d3.	undertake practical experimental work using appropriate equipment and instruments,	\checkmark					

Ċ	d4.	work safely in the laboratory and the field and to access related safety issues,		\checkmark	\checkmark		
Ċ	d5.	undertake practical experimental work using appropriate equipment and instruments.	\checkmark	\checkmark	\checkmark		

5. Students' Assessment Methods and Grading:

- **5.1.** Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- **5.4.** Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and			Intellectual skills			Practical and				General skills				
	un 1	aers	tandi	ng	1 1	10	1.2	1.4	pro	Tessio	nal s	KIIIS	11	10	12	14
.	al	a2	a3	a4	bl	b2	b3	b4	cl	c2	c3	c4	dl	d2	d3	d4
Introduction: what is	Х						Х						Х			
petroleum? Geologic																
factors																ļ
Porosity and		Х				Х					Х					Х
permeability in																
sedimentary rocks																
Burial Histories; Burial				Х												
and diagenesis																
Student-led discussions			Х													
of case studies.																
Paleohydrology in				х										Х		
sedimentary basins																
Reservoirs and traps						х				х						
Source Rocks; organic		X						Х						Х		
geochemistry of oil and																
gas																
Diagenesis, catagenesis,			Х										Х			
and thermal markers																
Basin Analysis I: basin		Х							Х						X	
formation and types																
Sequence stratigraphy	Х						Х					х		Х		
and basin analysis																
Drilling and geophysical			X			X							Х			
logging methods																
Student presentations.		Х								Х					X	
Basin analysis II:		Х														Х
primary and secondary																
migration																
Wrap-up and review	1		Х											X		

6. List of references:

6.1. Course notes

Lecture notes prepared by the course instructor(s) Power point presentations Notes of Petroleum geology for students.

6.2. Required books.

None

6.3. Recommended books

None

6.4. Periodicals, Web sites, etc.

www.google.com & www.scincedirect.com

7. Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinator: Head of the Department: Date: Dr. Mohamed Afife Prof. Dr. Gamal El Qot 2022/2023

Course Specification 462 G: Hydrogeology of Egypt

A- Affiliation			
Relevant program:	B.Sc. in Geology		
Department offering the p	program:	Department of Geology	
Department offering the o	course:	Department of Geology	
Academic year/level:		Fourth level	

B - Basic information

Title: Hydrogeology of Egypt	Code:462G	Year/level: Fourth level
Teaching Hours:	Lectures: 2	Tutorial: 0
	Practical: 2	Total:4 h/week

C - **Professional** information

1 – Course Learning Objectives:

This course is designed to study the distribution of groundwater aquifers in different provinces in Egypt. The students should therefore be able to assess the hydrogeological and hydrochemical characteristics of groundwater aquifers

2 - Intended Learning Outcomes (ILOS)

On successful completion of the course, the graduate will be able to:

- a.1. Gain knowledge and systematic understanding of hydrogeological units in some localities of Egypt
- a.2. Gain a critical awareness of hydrocgeological and hydrogeochemical characters of the concerned hydrogeological units
- a.3. An understanding of the theoretical basis for groundwater Classification in some localities

a.4. Realize the hydrogelogic value for the hydrocgeological and hydrogeochemical characters

b - Intellectual skills:

On successful completion of the course, the graduate will be able to:

- b1. explain the basic principles of Hydrogeology of certain area;
- b2. identify and classify the groundwater aquifers and;
- b3. identify and classify different hydrogeological units
- b4. explain the basic processes for studing defferent water units
- b5. know and understand the hydrogeochemical characters of certain area

c - Practical and professional skills:

On successful completion of the course, the graduate will be able to:

- c1. identify and interpret aquifer geochemistryof certain area
- c2. understand different hydrogeochemical parameterssof certain area ;
- c3. understand the key factors that govern aquifers geochemistry of certain area;
- c4. interrogate and interpret the geological literature on aquifers geochemistry
- c5. write clear and concise hydrogeological reports of an area.

d - General skills:

On successful completion of the course, the graduate will be able to:

- d1. Collaborate effectively and positively with others as a part of team through constructive discussions and arguments.
- d2. Undertake responsibility of doing hydrogeological projects by himself and the other in team works.

d3. Display the hydrogeological and hydrogeochemical information and results, using the suitable equipment and / or explanatory posters, reports and models.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1- Introduction to the hydrogeology of Egypt	2	0	2
2- Groundwater aquifers in the Nile Delta basin	2	0	4
3- Groundwater aquifers in the Eastern Desert	6	0	4
4- Groundwater aquifers in Sinai	4	0	4
5- Groundwater aquifers in the Western Desert	8	0	4
6- Groundwater aquifers in the Nile Vally	4	0	4
7- Revision and Feedback	2	0	2
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
lding	a1	Gain knowledge and systematic understanding of hydrogeological units in some localities of Egypt	X	0	X	0	0	X
t Understan	a2	Gain a critical awareness of hydrocgeological and hydrogeochemical characters of the concerned hydrogeological units	х	х	0	0	0	0
wledge &	a3	An understanding of the theoretical basis for groundwater Classification in some localities	X	0	0	0	0	X
Knov	a4	Realize the hydrogelogic value for the hydrocgeological and hydrogeochemical characters	X	х	0	0	X	X

	b1	explain the basic principles of	Х	0	0	0	Х	х
Skills	b2	identify and classify the groundwater aquifers:	X	0	0	0	X	X
ctual S	b3	identify and classify different hydrogeological units	X	X	0	0	0	X
intelle	b4	explain the basic processes for studying different water units	Х	х	0	0	0	х
	b5	know and understand the hydrogeochemical characters of certain area						
	c 1	identify and interpret aquifer geochemistry of certain area	X	0	0	0	Х	X
and I skills	c2	understand different hydrogeochemical parameters of certain area	х	0	0	0	Х	X
ctical siona	c3	understand the key factors that govern aquifers geochemistry of certain area	х	x	0	0	0	х
Prae	c4	interrogate and interpret the geological literature on aquifers geochemistry	х	х	0	0	0	Х
I	c5	c5. write clear and concise hydrogeological reports of an area.	х	0	0	0	х	X
S	d1	Collaborate effectively and positively with others as a part of team through constructive discussions and arguments.	Х	X	0	0	0	Х
eral Skill	d2	Undertake responsibility of doing hydrogeological projects by himself and the other in team works.	х	X	0	0	0	Х
Gen	d3	Display the hydrogeological and hydrogeochemical information and results, using the suitable equipment and / or explanatory posters, reports and models.	X	X	0	0	0	X

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, and b2	Fifth week	6 %
Mid-Term Exam	a1, a5, b3, b4.	Seventh week	6 %
Oral exam	a2, a3, a4, a5, b5, b1, c2, c3	Thirteenth week	16 %
Final written exam	a1, a2, a3, a5, b1, b2, b4, b5,	Fourteenth week	72 %
	c1, c2, c3, d2.		
	100 %		

-Course matrix

contents	Kn	Knowledge and In understanding				Intellectual skills			Practical and				General skills			
	un													1.0	10	
	al	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
Introduction to the	Х						Х						Х			
hydrogeology of Egypt																
Groundwater aquifers in		Х				X					Х					X
the Nile Delta basin																
Groundwater aquifers in				х												
the Eastern Desert																
Groundwater aquifers in			Х													
Sinai																
Groundwater aquifers in				х										х		
the Western Desert																
Groundwater aquifers in						X				Х						
the Nile Vally																
Revision and Feedback		Х						х						X		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s)

6-2 Required books.

None

6-20 Recommended books

Strategies for planning and Management of groundwater in the Nile valley and Delta in **Egypt** by HEFNY, K AND SHATA, A 1995: Pap. No. 31.

Hydrogeological map of Egypt, Scale 1:100,000 1st edition, Kom Ombo, QENA, Gerga, Sohag, Tanta, Assuit, El-Minya, Beni Suef and Cairo sheets by RESEARCH INSTITUTE FOR GROUNDWATER (RIGW), 1989

Hydrogeological map of Egypt, Scale 1:500,000 1st editions, Nile Delta. By RESEARCH INSTITUTE FOR GROUNDWATER (RIGW), 1992:

WATER RESOURCES AND HYDROMETEOROLOGY OF THE ARAB REGION by

MAMDOUH SHAHIN *Water Resources Engineering Consultant Formerly Professor Cairo University, Giza, Egypt and IHE-Delft, The Netherlands* Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

6-21 Periodicals, Web sites, etc.

www.springer.com

7- Facilities required for teaching and learning:

Data show Sound system to ensure the ease listening Using a blackboard Group discussions

Course coordinator:	Prof. Dr. Mohamed El-Fakharany / Dr. Nehad Mahmoud
Head of the Department:	Prof. Dr. Gamal El Qot
Date:	2022/2023

Course Specification

463 G: Environmental geology and water pollution

A- Affiliation		
Relevant program: B.Sc. in	Geology	
Department offering the program Department offering the course: Academic year/level:	: Departn Departn Fourth l	nent of Geology nent of Geology evel
B - Basic information		
Title: Environmental geology and water pollution	Code:463G	Year/level: Fourth level
Teaching Hours:	Lectures: 2 Practical: 2	Tutorial: 0 Total: 4 h/week

C - **Professional** information

1 – Course Learning Objectives:

This course is designed to provide a basic understanding of geologic processes and how they inter-relate with human activities. It is also aimed to examine how human activities impact natural geologic systems

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a1. review the role of environmental geology subject and pollution studies,
- a2. recognize the pollution problems and ways to solve,
- a3. characterize each type of the tools and methods used in geological and environmental survey applications,
- a4. demonstrate how survey is important for land use and town planning and environmental geological aspects.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. organize the project and set up a treatment and precautionary plan,
- b2. decide which treatment method and tool can be used,
- b3. analyze the various environmental geology aspects,
- b4. investigate the distribution of risk and environmental issue problems.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1. analyze pollution measurements and plan a project,
- c2. use the detection tools in mapping environmental problems,
- c3. Draw interpretations of pollution measurements and side effects.

d - General skills:

On successful completion of the course, the student should be able to:

- d1. review available literature and study the area,
- d2. interpret measurements using software to write a report,d3. apply knoweldge and training in environmental problems.d3. work in a group and manage time and effort.

3 – Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
1- The causes and sources of pollution	2	0	2
2- Pollutants and their movement in surface and ground water	4	0	4
3- The impact of seawater intrusion on groundwater quality	4	0	4
4- The rise of water level and its impact on the environment	4	0	4
5- Flashfloods and its hazards	4	0	4
6- The movements of sand dunes and its hazards	4	0	4
7- Global climate changes	2	0	2
8- Revision and feedback	4	0	4
Total hours	28	0	28

4 - Teaching and Learning methods:

		Intended Learning Outcomes		ations	sions & rs	al	n solving	torming
			Lecture	Present	Discus Semina	Practic	Probleı	Brain s
	a1	review the role of environmental geology subject and pollution studies,	\checkmark					
e & ding	a2	recognize the pollution problems and ways to solve,		\checkmark	\checkmark			
inowledg nderstan	a3	characterize each type of the tools and methods used in geological and environmental survey applications,	\checkmark	\checkmark	\checkmark			
n M	a4	demonstrate how survey is important for land use and town planning and environmental geological aspects.	\checkmark					\checkmark
lai	b1	organize the project and set up a treatment and precautionary plan,			\checkmark			
ellectu Skills	b2	decide which treatment method and tool can be used,	\checkmark					
Int	b3	analyze the various environmental geology aspects,					\checkmark	

	b4	investigate the distribution of risk and environmental issue problems.			\checkmark	\checkmark		
and nal	c1	analyze pollution measurements and plan a project,		\checkmark				
ctical fessio skills	c2	use the detection tools in mapping environmental problems,	\checkmark	\checkmark	\checkmark			
Pra	c3	draw interpretations of pollution measurements and side effects.				\checkmark	\checkmark	
lls	d1	review available literature and study the area,	\checkmark				\checkmark	\checkmark
al Ski	d2	interpret measurements using software to write a report,				\checkmark		
Gener	d3	apply knoweldge and training in environmental problems,	\checkmark			\checkmark		
	d4	work in a group and manage time and effort.						

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activities and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independent work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester work	ILOs a, b, d	Semester course	8 %
Mid-Term exam	First ¹ / ₂ of ILOs a, b, c	Seventh week	6 %
Practical exam	ILOs c, b	Thirteenth week	24 %
Oral exam	ILOs c, b	Thirteenth week	14 %
Final written exam	ILOs a, b, c	Fourteenth week	48 %
Total			100 %

-Course matrix

contents	Kn	Knowledge and I			Inte	Intellectual skills			Practical and				General skills			
	un	inderstanding							pro	olessional skills					-	
	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4	d1	d2	d3	d4
The causes and sources of pollution	X						X						Х			
Pollutants and their movement in surface and		x				X					x					X
ground water																
The impact of seawater				х												
intrusion on groundwater																
quality																

The rise of water level		Х								
and its impact on the										
environment										
Flashfloods and its			Х						X	
hazards										
The movements of sand				Х		х				
dunes and its hazards										
Global climate changes	X				X				X	
Revision and feedback		Х						X		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s)

6-2 Required books.

None

6-22 Recommended books

INTRODUCTION TO ENVIRONMENTAL HYDROGEOCHEMISTRY by© Ondřej Šráček, Josef Zeman, 2004 ISBN 80-210-3586-2

Climatic Changes and Water Resources in the Middle East and North Africa by F. Zereini • H. Hötzl (Eds.) ISBN: 978-3-540-85046-5 e-ISBN: 978-3-540-85047-2 Environmental Science and Engineering ISSN: 1863-5520 Library of Congress Control Number: 2008932570 _c 2008 Springer-Verlag Berlin Heidelberg

Geochemistry, groundwater and pollution. [C A J Appelo; Dieke Postma]

Groundwater resource development Hamill, L. and Bell, F.G.,(1986): British Library, ISBN 0-408-01409-1, pages. 253

6-23 Periodicals, Web sites, etc.

7- Facilities required for teaching and learning: Data show Sound system to ensure the ease of listening Using a blackboard Group discussions Course coordinator: Prof. Dr. Mohamed El-Fakharany Head of the Department: Prof. Dr. Gamal El Qot Date: 2022/2023

اقتراحات اللجنه المشكله من القسم لتوصيف ووضع معايير لتقييم مقرر التدريبات الحقليه

- 1- يتم تدريس مقرر االجيولوجيا الحقلية على مدار العام الدراسى و يشارك فيه كل شعب القسم ويقوم الأستاذ الدكتور / زكريا هميمى بإعداد مسوده تشمل الإطار العام للموضوعات التى سوف يتم تدريسها ويتم مناقشتها فى مجلس القسم ثم تتولى كل شعبه إعداد الجزء الخاص بها من ذلك المقرر.
- 2- يتم أدراج المقرر ضمن الساعات التدريسيه الفعليه لأعضاء هيئه التدريس بواقع 3 ساعات عمليه في الأسبوع لكل عضو
 - 3- يفضل قيام الرحلتين العلميتين للطلاب الى الحقل بين الفصلين الدراسيين
 - 4- يفضل ان امكن اختيار بعض المناطق القريبة مثل أبورواش او طريق السخنة تحت اشراف أعضاء هيئه التدريس للقيام برحلات اليوم الواحد ويكون لها نسبه يتفق عليها داخل مجلس القسم ولا تتجاوز 10% من الدرجه الكليه المخصصه للماده.
 - -- يتم تقييم الطلاب كالتالى :- (50 درجه للرحله العلميه)+ 50 درجه للأمتحان)

10 درجات لانتظام الطالب و اهتمامه و متابعته أثناء العمل الحقلى 10 درجات كراسة الحقل (Field Notebook) 20 درجة تقرير (Report) على ان يقدم كل طالب تقرير خاص به 10 درجات امتحان عملى فى الحقل 50 درجة mal exam (20 درجة شفهى – 30 درجة نظرى)

يشتمل الأمتحان على مقرر الجيولوجيا الحقليه الذى تم تدريسه للطلاب وكذلك على المعلومات التى درسها الطالب فى الرحله العلميه و الإمتحان ينقسم الى جزئين شفهى يقيم فيه الطالب بواقع 20 درجه وامتحان نظرى يقيم فيه الطالب من 30 درجه.

6- يتم عقد الأمتحان قبل بدايه الأمتحانات النظريه كورقه إمتحان عمليه

اقتراحات اللجنه المشكله من القسم لتوصيف ووضع معاير لتقييم مقرر البحث والمقال

مادة البحث والمقال هو عمل مستقل يقوم به كل طالب ويتولى إنجازه وفق جدول زمني محدد يقوم الطالب خلاله بإعداد بحث/مشروع في موضوع من موضوعات فروع التخصص الرئيسية التي يتولى در استها في شعبته، وتحت إشر اف أحد أساتذتها، ويتم تقديمه بشكله النهائي مطبوعاً، وتتم مناقشته من قبل لجنة <u>مشكلة من مجلس القسم</u> ويكون الأستاذ المشرف عضوا فيها. ويساهم الطالب بشكل كبير في تحديد مضمون مشر وعه، حيث يعطى مساحة واسعة من الحرية سواء في اختيار الفرع الذي سيتولى التركيز عليه، وذلك من خلال تحديده واختيار عنوانه أو من خلال مضمونه بمساعدة الأستاذ المشرف، حيث يتولى التركيز عليه، وذلك من خلال تحديده واختيار عنوانه أو من خلال مضمونه الحرية الواسعة التي يملكها الطالب، والتي تهدف إلى تنمية قدراته الفكرية والعلمية. ومن ناحية أخرى فإن إنجاز من المروع يتطلب قدراً أكبر من الاستقلالية التي تمنحها للطالب القدرة الذاتية على البحث والتحري وجمع المعلومات من المروع يتطلب قدراً أكبر من الاستقلالية التي تمنحها للطالب القدرة الذاتية على البحث والتحري وجمع المعلومات المشروع يتطلب قدراً أكبر من الاستقلالية التي تمنحها للطالب القدرة الذاتية على البحث والتحري وجمع المعلومات من المراجع الأصيلة المختلفة، تلك المهارة التي يتمادها الاستقلال في البحث عن المعلومة وجمعها إلى جان من المراجع الأصيلة المختلفة، تلك المهارة التي يتطبها الاستقلال في البحث عن المعلومة وجمعها إلى جانب المهار ات ومنده المراجع الأصيلة المختلفة، تلك المهارة التي يتطبها الاستقلال في البحث عن المعلومة وجمعها إلى جانب المهار ات المشروع يتطلبها عرض الأفكار وتسلسلها ومنطقيتها. كما أن لهذا المشروع الأثر الكبير على شخصية منفذه الذي ومنحه المجال لإظهار إمكاناته العقلية والفكرية وإعطائه الفرصة للتعبير عن ذاته وإبداء آرائه ويتيح المشروع أيضا ومنحه المجال أن يظهر من خلال التطبيق العلمي الذي يواصول إلى المعلومة مع تعزيز القدرة على البحث العلمي ومنحه المجال إظهار إمكاناته العقلية والفكرية وإعطائه الفرصة للتعبير عن ذاته وإبداء آرائه ويتيح المشروع أيضاً الطالب أن يظهر من خلال التطبيق العلمي الذي يجسده في البحث مدى المعرفة النظرية المكتسبة التي تمثل الحصيلة المعرفية للمقررات التي يقاها في التخصصات الأساسية على مدى دراسته

أهداف المشروع

بعد إكمال الطالب المشروع يكون من المفترض أنه قد اكتسب المهارات الضرورية الآتية: -

- أن يكون بمقدوره العمل باستقلالية.
- أن يكون قادراً على أن يُحضّر ويقدم عمله بمعايير مهنية ملائمة.
 - أن يكون بمقدوره التواصل بمهارة مع جمهور المختصين.
- أن يكون قادراً من خلاله على تنمية قدراته الفكرية والعلمية والبحثية

طرق التعليم والتعلم

- يتم إنجاز البحث من قبل الطالب لذلك فإن عليه أن يكون على جاهزية وجهد كبيرين يتناسبان مع ما تتطلبه الساعات المعتمدة للمشروع.
- يتم إنجاز المشروع من قبل الطالب تحت توجيه أحد أساتذة القسم في التخصص وتحت إشرافه، وذلك من خلال اللقاءات الدورية والمنتظمة والمعلن عنها في جدوله.
- يتولى المشرف تزويد الطالب بالنصائح والإرشادات العلمية وكذلك بعض المراجع العلمية ان لزم الامر والتي تجنبه الوقوع في الأخطاء سواء المتعلقة منها في المنهج أو في الموضوع أو في الاستنتاج ومراجعة النتائج اول بأول.

الشكل النهائي للمشروع

أولاً: إن الشكل النهائي لتقرير المشروع يفترض: -

- أن يكون التقرير مطبوعا (يرفق معه البرنامج المصمم في أسطوانة CD).
 - ألا تتجاوز عدد صفحاته المائه صفحة والا تقل عن عشرون صفحه.
 - أن يكون مجلداً تجليداً عادياً وبسيطاً مع مراعاة التنظيم.
- أن تتضمن الصفحة الأولى منه اسم الجامعة وشعارها واسم الكلية وعنوان المشروع واسم الطالب ورقمه
 الجامعى واسم الأستاذ المشرف والسنة الجامعية مرتبة حسب التسلسل.
- أن يقدم المشروع بصيغته النهائية للقسم بعدد نسخ من المشروع بواقع عدد المحكمين + نسخه تحفظ فى
 القسم قبل موعد المناقشه باسبوع على الاقل

ثانياً: متطلبات إخراج المشروع بشكله النهائي: -

- ترتب جميع عناوين المشروع الأساسية من فصول ومباحث وفروع في وسط الصفحة بخط أسود ثقيل.
 - تكتب العناوين بخط عريض حجم 16.
- تنسق صفحات البحث بحيث تترك مسافة 2 سم من أعلى وأسفل ويسار الصفحة وتترك مسافة 3 سم من يمين الصفحة.
 - تترك مسافتان بين سطر وآخر.
 - تكتب الهوامش بخط حجم 12.
 - يتبع بشأن الإشارة إلى المراجع ما هو متعارف عليه في التوثيق العلمي للأبحاث والرسائل العلمية.

ثالثاً: يتكون تقرير المشروع من المكونات الآتية: -

- صفحة العنوان.
 - الملخص.
- فهرست المحتويات.
 - المقدمة.
 - المحتوى
 - الخاتمة.
- قائمة بالمراجع مرتبة حسب الأحرف الأبجدية للمؤلفين.

ملخص تقرير المشروع ينبغي ان لا يتجاوز 200 كلمة (ملخص باللغة العربية + ملخص باللغة الإنجليزية) يتضمن ما يأتى: -

- أهداف المشروع.
- الأسلوب الذي اعتمده الباحث.
- النتائج والتوصيات التي توصل إليها الباحث.

طريقة عرض المشروع وتقييمه

يتم تقييم المشروع وفق الخطوات الأتية: -

- يخضع المشروع للتقييم من لجنة موحده مشكلة من قبل مجلس القسم تحتوي الأستاذ المشرف على هذا البحث/المشروع.
- يكون المشروع قابلاً للتقييم من تاريخ تسليم التقرير للقسم مطبوعاً بصيغته النهائية مرفق معه أسطوانة تحتوي على مرفقات المشروع.
 - تتم مناقشة الطالب مناقشة علنية يعلن عنها مسبقا ويمكن لأي أستاذ او طالب حضورها.
 - يعرض الطالب المشروع عن طريق الإلقاء المدعم بالتقنيات الحديثة والمتاحة في الكلية.

ضوابط المشروع

1- يتم طرح مادة المقال و البحث من بداية الفصل الدراسى الاول و يتم تنفيذ البحث على مدار العام الدراسى و ذلك لطلاب المستوى الرابع لطلاب المستوى الرابع 2- يتم توزيع الطلاب على الاساتذة بطريقة عشوانية للطلاب فى وجود جميع أعضاء مجلس القسم أو عن طريق عمل قرعه عنه قرعه عليه فى وجود جميع الطلاب المسجلين للمقرر وبإشراف لجنه يختارها مجلس القسم

3- يتم تقييم المشروع من خلال مناقشة الطالب مناقشة علنية تهدف إلى إبراز القيمة الموضوعية للمشروع وزرع الثقة بنفسه وتدريبه على التحدث ومن أهم المقاييس التي يجب مراعاتها عند التقييم: -

- درجة أهمية المشكلة التي عالجها.
 - مدى صحة الحلول التي اقترحها.
 - صدى النتائج التي توصل إليها.
- أهمية التوصيات التي تصورها لعلاج المشكلة.
- التأكد من سلامة استخدام المراجع الأصيلة واتباع الأساليب العلمية فى البحث.
 - التأكد من سلامة التعامل مع فرضيات البحث وإعطاء الحلول المنطقية.
 - التأكد من سلامة استعراض الموضوع وتغطيته لجميع جوانبه.
 - التأكد من سلامة الصياغة والتعبير والتوصل إلى النتائج.
 - مراعاته للأمانة العلمية وحقوق الملكية الفكرية.
 - تملكه اللغة وتطويعها في صياغة ما توصل اليه من نتائج.

ضوابط العمل في المشروع

على كل طالب أن يختار موضوعاً من المواضيع المهمة التي تعالج مشكلة علمية نظرية أو عملية
 وكل حسب تخصصه. وفي سبيل تسهيل هذه المهمة يطرح الأستاذ المشرف عناوين للبحوث
 المقترحة تعرض على الطلبة لمساعدتهم في اختيار موضوع المشروع يراعي الأستاذ المشرف

في العناوين المطروحة ملاءمتها للطالب باعتبارها عناوين للمشاريع وكذلك الاخذ في الاعتبار المدة الزمنية اللازمة لأجراء المشروع.

- يحدد القسم العلمي لكل طالب مشرفاً يتولى إرشاده في مسيرة مشروعه بعد الاتفاق على الموضوع.
- يلتزم الطالب عند كتابته المشروع بالأصول والضوابط العلمية من حيث التوثيق العلمي للمراجع والأمانة العلمية في اقتباس الأفكار والإشارة إلى أصحابها.
- يتولى الطالب تقديم عدد نسخ من المشروع بواقع عدد المحكمين + نسخه تحفظ فى القسم إلى
 القسم لتحديد موعد لتقييمه.
- يسلم الأستاذ المشرف استمارة تقييم المشروع المعتمدة إلى القسم بعد الانتهاء من التقييم مباشرة.

Checklist for Student Oral Presentation

This checklist is meant to guide you in preparation for a successful oral presentation of your graduation project:

- $\hfill\square$ Introduce yourself to panel members.
- $\hfill\square$ State the type of project you did.
- □ Describe, in detail, the procedures you followed in completing your project.
- □ Explain what you learned while completing your project.
- \Box Describe how your project has impacted your personal growth.

□Conclude your presentation by asking the panel members for questions.

The Oral Presentation will be judged on The Basis of The Following Categories

a. <u>Content, which includes.</u>

- 1.) 30-minute minimum presentation
- 2.) Supporting information
- 3.) Conclusions
- 4.) Importance, value, or impact of the project
- 5.) Sources of information
- 6.) Vocabulary relevant to the topic
- b. Effective speaking, which includes.
- 1.) Presenting oneself with poise
- 2.) Maintains consistent eye contact with the review panel.
- 3.) Enunciates clearly.
- 4.) Varies tone, volume, and speed to enhance presentation.
- 5.) Speaks alone, without the aid of an interpreter.

c. Organization

- 1.) Is appropriate to the study.
- 2.) Use of an engaging beginning and thought fending.
- 3.) Supports a clear thesis or idea.
- 4.) Flows smoothly from one idea to the next
- d. <u>Visual Media</u>
- 1.) Effective use of graphic design
- 2.) Communicates significant information.
- 3.) Clearly, accurately, and precisely communicates.

Information

4.) Photos should be mounted on poster board, organized in an album, or placed in a computer/slide presentation.

- e. <u>Response to questions</u>
- 1.) Effectively responds to all questions from the panel.

2.) Uses questions from the panel to illustrate the effort done in your work and the strong points in your research.

توزيع علامات تقييم الاستاذ المشرف على مادة مشروع التخرج

				اسم الطالب الأول:
				اسم الطالب الثاني:
				اسم الطالب الثالث:
Title:				عنوان المشروع:
Place:				مكان التنفيذ:
العلامة الفعلية	العلامة		المعيار	
	10	رير	/ الالتزام بالمواعيد ودقة التقا	حسن تنفيذ المشروع
	10	ل تنفيذه	لعلمية والعملية ومدى اكتما	نتائج المشروع من الناحية ا
	10	بل المشروع	لمسل ومنطق واكتمال وتفصب	طريقة توثيق المشروع لغة وتس
	10		لشرح أثناء جلسة المناقشة	طريقة الأداء وال
	40		لعام لتقييم المشرف	المجموع ا
Address:		-		العنوان:

التوقيع والختم الرسمي	اسم المشر ف
Email:	البريد الإلكتروني :
Phone:	هاتف :

تقرير لجنة المناقشة

	عنوان المشروع:
	المشرف المباشر:
الرقم الجامعي	منفذو المشروع

العلامة الفعلية	العلامة من	توثيق المشروع
	5	مستوى اللغة المستخدمة في التوتيق
	4	مدى مطابقة النونيَّق للمو اصفات المطلوبة
	4	مطابقة التوتيق لما نفذ فعليا على أرض الواقع
	4	سُمولية النونيق لكافة جوانب الموضوع
	5	توفر المخططات والرسوم التوضيحية في التوتيق
	4	توفر المقدمات النظرية للموضوع
	4	نوفر المرفقات المطلوبة من بر امج وإنجازات
		أداء منفذ المشروع
	5	أسلوب العرض أتناء المناقشة
	5	أداء المنفذ أتداء الجلسة
	5	دقة الإجابات على أسئلة اللجنة
	5	حجم الأخطاء في أداء البرنامج
	5	مطابقة العمل المنفذ للمتطلبات
	5	استيعاب المنفذ لما نفذ من عمل
	60	المجموع العام لتقييم اللجنة

التوقيع	اسماء اعضاء اللجنة
	-1
	-2
	-3

توصيف مقرردراسى تغذية صحية (13م ك)

أإنتماء البرنامج

البرنامج المعني:برنامج بكالوريوس العلوم في الجيولوجيا القسم الذي يقدم البرنامج:قسم علم الجيولوجيا القسم الذي يقدم المقرر:قسم علم الحيوان الفرقة / المستوى:المستوى الأول

ب معلوماتأساسية

العنوان: التغذية الصحية الرمزالكودى: 13م ك الفرقة / المستوى: المستوى الأول عددالوحداتالدراسية: 0 النظرى: 2 العملى: 0 التمارين: 0 الكلى:ساعتان / الأسبوع

ج. معلومات متخصصة

هدف المقرر:

الهدف من المقرر هو تعريف الطالب علي مكونات الوجبة الصحية وما يسببه نقص أي نوع من أنواع الوجبات الصحية. كما يهدف أيضا لتعليمه مفهوم التغذية العلاجية وأهدفها الأنظمة الغذئية وطرق إطعام المريض التغذية العلاجية لمرضى البول السكري والكبد والكلية وحويصلات الجهاز البولي والمرارة وفقر الدم الناجم عن نقص الغذاء.

2. نواتج التعلم المستهدفه:

أ. المعلومات والمفاهيم:

11. يدرس العلاقة بين الغذاء والمغذيات ووظائف المغذيات الأساسية في الجسم واحتياجات الجسم للطاقة.
25. يتعرف علي أنواع و هضم و إمتصاص كل من الكربو هيدرات والبروتين والدهون.
36. يدرس أنواع الفينامينات و الأملاح المعدنية و اهميتها بالنسبة للجسم.
36. يدرس أنواع الفينامينات و الأملاح المعدنية و اهميتها بالنسبة للجسم.
37. يتعرف علي ما يسببه نقص أي نوع من أنواع الوجبة و الأمراض التي يسببها.
38. يدرس أعراض و أميات و الأملاح المعدنية و اهميتها بالنسبة للجسم.
39. يتعرف علي ما يسببه نقص أي نوع من أنواع الوجبة و الأمراض التي يسببها.
30. يتعرف على مفهوم التغذية العلاجية و أهدافها و الأنظمة الغذئية وطرق إطعام المريض.
31. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى السكرى.
32. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
33. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
34. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
35. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
36. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
37. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
38. يدرس أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
39. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
30. يتعرف على أعراض و أسباب والتغذية العلاجية لمرضى الكلي.
31. يتعرف على أو أسباب والتغذية العلاجية لمرضى الكلي.
31. يتعرف على أنواع و أسباب والتغذية العلاجية لمرضى الكلي.

ب. المهارات الذهنية:

ب1. يربط بين وظائف المغذيات الأساسية واحتياجات الجسم لها. ب2. يدرك العلاقة بين أنواع المغذيات وتأثيركل منهما علي الأخر. ب3. يستنتج الأمراض التي تحدث نتيجة النقص اوالأفراط في تناول اي من الفيتامينات والأملاح المعدنية. ب4. يستنتج انواع الغذاء المناسبة لمرضى السكرى والكلى والكبد والمرارة. ب5. يستنتج انواع الغذاء التي يجب أن يتجنبها مرضى السكرى والكلى والكلى والكبد والمرارة. ب6. يقارن بين أنواع حصيات الجهاز البولى. ب7. يجمع بين أعراض وأسباب والتغذية العلاجية لأمراض الكبد والكلية. **ج. المهارات المهنية:** جـ1. يحدد الأضرار التي تنتج عن نقص نوع معين من الغذاء. جـ2. وصف غذاءعلاجي لبعض الامراض. جـ3. يحدد الغذاء الصحي في ضوء ما درسةعن انواع الغذاء.

د. المهارات العامة:

- دًا بحث عن المعلومات والتعلم الذاتي.
 - د2.استخدام الكمبيوتر والانترنت

3 محتوى المقرر :

c.i.i.i	ساعات		
المواصوع	النظرى	العملى	التمارين
 أساسيات التغذية و العلاقة بين الغذاءو المغذيات. 	2		
 مقدمة عن التغذية العلاجية وأهدفها. 	2		
 انواع الكربو هيدرات و هضمها . 	2		
 الأنظمة الغذئية وطرق إطعام المريض 	2		
 أيض الكربو هيدرات وفوائدها. 	2		
 التغذية العلاجية لمرضى البول السكرى 	Z		
 انواع البروتينات و هضمها . 	2		
 الكلية ووظائفها والتغذية العلاجية لمرضى المتلازمة الكلائية. 	۷.		
 أيض البروتينات و هضمها. 	2		
 التغذية العلاجية لمرضى الالتهاب الكلوى الحاد والفشل الكلوى الحاد 	۷.		
امتحان منتصف الترم	2		
 أنواع الدهون و هضمها. 	2		
 التغذيةالعلاجية لمرضى حصيات الجهاز البولي 	۷		
 أيض الدهون وفوائدها. 	2		
 التغذية العلاجية لمرضى التهاب الكبد الحاد وتشمع الكبد 	2		
 الماء وأنواع الفيتامينات وخصائصها العامة. 	2		
 التغذية العلاجية لمرضى الفشل الكبدي وزرع الكبد 	2		
 الفيتامينات الذائبة في الماء. 	2		
 التغذية العلاجية لمرضى التهاب المرارة 	2		
 الفيتامينات الذائبة في الدهون. 			
 أمراض سوء التغذية الناجمة عن نقص الغذاء (فقرالدم) أنواعها 	2		
وأسبابها وأعراضها			
 الأملاح المعدنية كبيرة المقدار. 			
 فقر الدم الناجم عن نقص الحديد 	2		
• $ $	2		
 فقر الذم الناجم عن نقص والفو لات و قينامينBI2 			
مراجعة	2		
عددالساعات	28		

4 أساليب التعليم والتعلم:

العصف الذهنى	حل المشاكل	المناقشات والندوات	عروض وأفلام	المحاضرة	نواتج التعلم المستهدفه		
\checkmark		\checkmark	\checkmark	\checkmark	يدرس العلاقة بين الغذاء والمغذيات ووظائف المغذيات الأساسية في الجسم واحتياجات الجسم للطاقة.	.11	
\checkmark	~	\checkmark	\checkmark	\checkmark	يتعرف علي أنواع وهضم وإمتصاص كل من الكربوهيدرات والبروتين والدهون.	.21	
\checkmark	~	\checkmark	\checkmark	\checkmark	يدرس أنواع الفينامينات والأملاح المعدنية واهميتها بالنسبة للجسم.	.31	
~	~	\checkmark	~	~	يتعرف علي ما يسببه نقص أي نوع من أنواع الوجبة والأمر اض التي يسببها.	.4	مفاهيم
		\checkmark	\checkmark	✓	يتعرّف على مفهوم التغذية العلاجية وأهدافها والأنظمة الغذئية وطرق إطعام المريض.	.51	مات وال
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يدرس أعراض وأسباب والتغذية العلاجية لمرضى السكري.	.61	علق
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يتعرف على أعراض وأسباب والتغذية العلاجية لمرضى الكلي.	.71	e.
\checkmark	\checkmark	\checkmark	\checkmark	~	يدرس أعراض وأسباب والتغذية العلاجية لمرضى حويصلات الجهاز البولي.	.81	
~	~	\checkmark	\checkmark	~	يدرس أعراض وأسباب والتغذية العلاجية لمرضى الكبد والمرارة.	.9	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يتعرف على أنواع وأعراض واسباب والتغذية العلاجية لامراض سوء التغذية الناجمةعن نقص الغذاء(فقرالدم).	.10 ^j	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يربط بين وظائف المغذيات الأساسيةُ واحتياجات الجسم لها.	ب1.	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يدرك العلاقة بين أنواع المغذيات وتأثيركل منهماعلى الأخر.	ب2.	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يستنتج الأمراض التي تحدث نتيجة النقص اوالأفراطُ في تناول اي من الفيتامينات والأملاح المعدنية.	ب3.	
\checkmark	\checkmark	\checkmark		\checkmark	يستنتج انواع الغذاء المناسبة لمرضى السكرى والكلى والكبد والمرارة.	ب4.	الذ هنية
\checkmark	\checkmark	\checkmark		\checkmark	يُستنتج أنواع الغذاء التي يجب أن يتجنبها مرضى السكري والكلى والكبد والمرارة.	ب5.	لمهارات
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يقارن بين أنواع حصيات الجهاز البولي.	ب6.	1
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يجمع بين أعراض وأسباب والتغذية العلاجية لأمراض الكبد والكلية.	ب7.	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يقارن بين أنواع سوء التغذية الناجمة عن نقص الغذاء (فقر الدم).	ب8.	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	يحدد الأضرار التي تنتج عن نقص نوع معين من الغذاء.	ڊ ا.	نية
\checkmark	\checkmark		\checkmark	\checkmark	وصف غذاءعلاجي لبعض الامراض.	ڊ ـ2.	راتالمه
\checkmark	\checkmark	\checkmark		✓	يحدد الغذاء الصحى في ضوء ما درسةعن انواع الغذاء.	ج .3	المها
\checkmark	\checkmark				بحث عن المعلومات و التعلم الذاتي.	د1.	عامة
\checkmark	~				استخدام الكمبيوتر والانترنت.	د2.	المهاراتلا
5. تقويمالطلاب:

7.10	الاسبوع السادس	امتحان منتصف الفصل
Х 10	الاسبوع الخامس عشر	امتحان الشفهي
× 80	الاسبوع السادس عشر	امتحان نهاية الفصل
	7. 100	المجموع

6. قائمة الكتبالدر اسية والمراجع:
أ. مذكرات:
مذكرة التغذية الصحية معتمدة من القسم

ب. كتب ملزمة د. منى خليل عبدالقادر . كتاب التغذية العلاجية. الناشر : مجمو عةالنيل العربية.2013.

> ج. كتب مقترحة أ.د حسين رزق . كتاب أسس التغذية الصحية للبالغين. مصر .2002 د. دوريات علمية أونشرات http://www.bu.edu.eg/staff/doaamohamed7-courses http://www.bu.edu.eg/staff/marwaabdelmaksoud7-courses

- 7. الأدوات المستخدمة فى التعليم والتعلم: جهاز كمبيوتر – ميكروفون – جهاز عرض ضوئى – شاشة عرض.
 - منسق المقرر: أ.د. ماجدة محمد العزبى أ.د. مشيرة محمد عزت سليم
 - **رئیس القسم:** أ.د./ نصر الله عبدالحمید
 - التاريخ: 2023-2022

Course Specification 015Ur: English (1)

A. Affiliation	
Relevant program: B.Sc. in Ge	ology Program
Department offering the program:	Department of Geology
Department offering the course:	Department of Geology
Academic year/level:	First level

B. Basic information

Title: English (1)	Code:015 Ur	Year/level: first level
Teaching Hours:	Lectures:2	Tutorial: 0
	Practical:0	Total:2 h/week

C. Professional information

1. Course Learning Objectives:

These courses are designed to enhance the students' capabilities on

English Language in both writing and speaking.

- The courses focus on using appropriate grammatical structures and verb tenses.

- They present an integrated program of speaking and writing in English for students of Faculty of Science. They also help the student to understand terminology and provide the correct spelling and words most commonly used in scientific writing.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

On successful completion of the course, the student should be able to:

- a1. Know new scientific vocabulary
- a2. Know English grammar
- a3. Know how to translate from English into Arabic and vice versa.
- a4. know writing skills.

b. Intellectual skills:

On successful completion of the course, the student should be able to:

- b1. Construct the scientific sentences.
- b2. Interpret the Scientific paragraph.
- b3. Apply on grammatical rule.
- b4. Develop students' proficiency of English and terminology

c. Practical and professional skills:

On successful completion of the course, the student should be able to:

- c1. Collect the new vocabulary .
- c2. Summarize the equivalents, opposites adjectives and nouns of the new words.

d. General skills:

In On successful completion of the course, the student should be able to:

- d1. Communicate with others
- d2. Work in group

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
Reading comprehension	6		
Grammar	10		
Translation	4		
Writing skills	6		
Revision	2		
Total hours	28		

4. Teaching and Learning methods:

	Ir	ntended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Problem solving	Brain storming
a a	a1.	Know new scientific vocabulary.	\checkmark	\checkmark	\checkmark		
ed ₉ sta	a2.	Know English grammar.	\checkmark	\checkmark	\checkmark		
Inowl & Jnder	a3.	Know how to translate from English into Arabic and vice versa.	\checkmark	\checkmark	\checkmark	\checkmark	
R K	a4.	know writing skills.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
lal	b1.	Construct the scientific sentences.	\checkmark	\checkmark	\checkmark		
ills	b2.	Interpret the Scientific paragraph.	\checkmark		\checkmark	\checkmark	\checkmark
ski	b3.	Apply on grammatical rule.	\checkmark		\checkmark	\checkmark	\checkmark
Inte	b4.	Develop student's proficiency of English and terminology.	\checkmark	\checkmark	\checkmark		
a: a	c1.	Collect the new vocabulary.				\checkmark	\checkmark
Practic I and profess	c2.	Summarize the equivalents, opposites adjectives and nouns of the new words.	\checkmark	\checkmark	~	✓	\checkmark
ills	d1.	Communicate with others.					
Gen Sk	d2.	Work in group.					

5. Students' Assessment Methods and Grading:

Tools:	To Measure	Time schedule	Grading
Mid-Term Exam	a1, a2, b1 tob4, c1, c2, d1 and	sixth week	10 %
and report	d2		
Oral exam	a1 to a4, b1 to b4 c1, c2 and	Fifteenth week	10 %
	d1		

Written exam	a1 to a4 and b1 to b4	Sixteenth week	80 %
Total			100 %

6.List of references:

61. Course notes

Manual notes handle of University textbook

62. Required books

-English Grammar in Use by Raymond Murphy

63. Recommended books

- Longman (2003): Active Study Dictionary

- A practical English Grammar by A.J. Thomson and A.V. Martinent

64. Periodicals, Web sites, etc.

www.google.com www.scincedirect.com

7. Facilities required for teaching and learning:

- Data show
- Using a black board

Course coordinator: Dr. Ghada El Sadek

Date:

2022-2023

Course Specification 030 UR: Computer Science (1)

A. Affiliation	
Relevant program:	B.Sc. in Geology Program
Department offering the program:	Department of Geology
Department offering the course:	Mathematics Department
Academic year/level:	First level / First Semester

	Lectures: 2h/week	Tutorial: 0
Computer Science (1)	030 UR	First level / First Semester
Title:	Code:	Year/level:
B. Basic information		

Practical: 2h/week Total Hrs.:4 h/week

C. Professional information

1. Course Learning Objectives:

At the end of this course, the students must be able to:

Reveal wide background knowledge related to different branches of computer science. Use such knowledge and understanding in the modeling and design of computer-based systems in a way that demonstrate comprehension of tradeoff involved in design choices.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

At the end of this course, the students must be able to:

a1. Identify how the hardware and software are integrated to create computer systems and distinguish between selected forms of computer hardware architecture and operating system technology.

a2. Explain the definitions and the relation between the distinct numerical systems.

a3. Memories the programming concepts and the types of variables.

a4. Write a program using a selected language for solving a mathematical problem.

b. Intellectual skills:

At the end of this course, the students must be able to:

b1. Apply the knowledge and understanding of the computer-Science processes for modeling of real-world problems.

b2. Construct and solve abstract and mathematical models of computer and communications systems.

c. Practical and professional skills:

At the end of this course, the students must be able to:

c1. Prepare a program using a programming language for solving a real problem in professional practice.

c2. Demonstrate competence in the use of programming in problem solving.

d. General skills:

At the end of this course, the students must be able to:

d1. Think independently and solve problems on scientific basis.

d2. Work in a team effectively; manage time, collaborate and communicate with others positively.

d3. Deal with property rights legally and ethically.

3. Contents			
Tonic	Lecture	Tutoria	Practical
	hours	l hours	hours
Fundamentals of programming and computer	2	_	2
languages (1)			
Fundamentals of programming and computer	2		2
languages (2)	4	-	4
Fundamentals of programming and computer	2		2
languages (3)	2	-	2
Algorithm and Flowcharts (1)	2		2
	4	-	4
Algorithm and Flowcharts (2)	2		2
	2	-	2
Elements of Language under case	2		2
	2	-	2
Revision and Mid-Term Exam	2		2
	2	-	2
Basic Instructions in Language under case (1)	2		2
	2	-	2
Basic Instructions in Language under case (2)	2		2
	2	-	2
Control Instructions (1)	2		2
	2	-	2
Control Instructions (2)	2		ſ
	2	-	2
Arrays and dimension statement Some applications	2	-	2
Subprograms	2	-	2
Applications	2	-	2
Total hours	20		20
	28	-	28

4 - Teaching and Learning methods:						
Intended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming

e & Understanding	a1.	Identify how the hardware and software are integrated to create computer systems and distinguish between selected forms of computer hardware architecture and operating system technology.	~				~	
	a2.	Explain the definitions and the relation between the distinct numerical systems.		~			~	
wled	a3.	Memories the programming concepts and the types of variables.	~				~	
Kno	a4.	Write a program using a selected language for solving a mathematical problem	~				~	
ectual ills	b1.	Apply the knowledge and understanding of the computer- Science processes for modeling of real-world problems.				~		~
Intel Sl	b2.	Construct and solve abstract and mathematical models of computer and communications systems.				~		~
al and sional Ills	c1.	Prepare a program using a programming language for solving a real problem in professional practice.	~				~	
Practic profes ski	c2.	Demonstrate competence in the use of programming in problem solving.	~				~	
neral Skills	d1.	Think independently and solve problems on scientific basis.		~	~			
	d2.	Work in a team effectively; manage time, collaborate and communicate with others positively.		~	~			
Ge	d3.	Deal with property rights legally and ethically.		✓	~			

5. Students' Assess	ment Methods and Grading	:	
Tools:	To Measure	Time schedule	Grading
Mid-Term Exam	a1, a2, b1	Week 7	14%
Oral exam	a1, a2, a3	Week 15	14 %
Practical exams	c1, c2	Week 15	14 %
Written exam	a1, a2, a3, a4,b1, b2	Start of the sixteenth week	48 %
	Total		100 %

6. List of references:

6.1. Course notes

-Notes approved by Math. Department

6.2. Required books.

J. Glenn Brookshear, D. Smith and D. Brylow, *Computer Science: An Overview*, 11th *Edition*, Marquette University Faculty, 2012.

6.3. Recommended books.

T.H. Cormen, C. E. Leiserson, R.L. Rivest and C. Stein, *Introduction to Algorithms, Second Edition*, McGraw-Hill Book Company, 2001.

6.4. Periodicals, Web sites, etc.

http://www.cs.bu.edu/courses/cs101/old/2013spring/slides/CS101.03.Bhttp://www.disi.un al.edu.co/~gjhernandezp/introisc/hide/[Computer.ScienceAn.Overview.(11th.2011)].J.Gl enn.Brookshear.pdf http://www.dcc.ufrj.br/~francisco_vianna/livros/Introduction.To.Algorithms.-.Cormen.-.2nd.Ed.pdf 7 Facilities required for teaching and learning:

7. Facilities required for teaching and learning: Black board, white board and data show.

Course coordinator:	Dr. Mosab Hassan, Dr. Gamal Ahmed, Dr.
	Ahmed Mohamed, and Dr. Abeer El-Fishawy
Head of the Department	Prof. Dr. Reda Gamal Abd El Rahman Khaled

Date: 2022-2023

Course Specification Computer Science (2) – 040 UR

A. Affiliation		
Relevant program:	B.Sc. in Geology Prog	gram
Department offering the program:	Department of Geolo	ogy
Department offering the course:	Mathematics Departi	ment
Academic year/level:	First level / Second S	Semester
Date of specifications approval:		
B. Basic information		
Title:	Code:	Year/level:
Computer Science (2)	040 UR	First level /Second Semester
	Lectures: 1h/week Practical: 2h/week	Tutorial: – Total:2 h/week

C. Professional information

1. Course Learning Objectives:

At the end of this course, the students must be able to:

This subject is aimed at students with little programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class will use a programming language, complementing to course 30 U.

2.Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

At the end of this course, the students must be able to:

a1. Outline the computer terms from the textbook, lecture, and readings.

a2. Explain the fundamental programming concepts such as variables, functions, loops and subroutines in a programming language.

a3. Identify application algorithm and use programming language.

a4. Write programs of real-world applications

b. Intellectual skills:

At the end of this course, the students must be able to:

b1. Construct programming in a selected programming language.

b2. developed code in programming language and adapt other people's code.

- b3. Organize a detailed algorithmic solution to a well-defined problem.
- b4. Design program to solve application problem.

c. Practical and professional skills:

At the end of this course, the students must be able to:

- c1. Show the language syntax in programming problems.
- c2. Recommended programming language to develop more reliable programs.

d. General skills:

At the end of this course, the students must be able to:

d1. Work effectively both in a team and independently.

d2. Learning information and communication technology effectively.

3. Contents

	Lecture	Tutoria	Practical
Торіс	hours	l hours	hours
Basics of programming.	1	-	2
Algorithms and flowcharts.	1	-	2
Basics of the programming language	1	-	2
Types of variables	1	-	2
Control statements (1)	1	-	2
Control statements (2)	1	-	2
Revision and mid-term exam	1	-	2
Loop statements (1)	1	-	2
Loop statements (2)	1	-	2
Array (1)	1	-	2
Array (1)	1	-	2
Functions (1)	1	-	2
Functions (2)	1	-	2
Some Applications.	1	-	2
Total hours	14	-	28

٦

4. Teaching and Learning methods:								
	In	tended Learning Outcomes	Lecture	Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
50	a1.	Outline the computer terms from the textbook, lecture, and readings	~					✓
Knowledge & Jnderstanding	a2.	Explain the fundamental programming concepts such as variables, functions, loops and subroutines in a programming language	~					~
	a3.	Identify application algorithm and use programming language	~				\checkmark	

	a4.	Write programs of real-world applications	✓	~	
ttual Is	b1.	Construct programming in a selected programming language.	✓	~	~
Intellec Skill	b2.	Developed code in programming language and adapt other people's code.	~	~	~
	b3.	Organize a detailed algorithmic solution to a well-defined problem.	✓	~	~
	b4.	Design program to solve application problem.	✓	~	~
cal sion	c1.	Show the language syntax in programming problems.		~	~
Practi and profess	c2.	Recommended programming language to develop more reliable programs.		~	~
eral ills	d1.	Work effectively both in a team and independently.	✓	~	~
Gen Ski	d2.	Learning information and communication technology effectively	✓	~	~

5. Students' Assessment Methods and Grading:							
Tools:	To Measure	Time schedule	Grading				
Mid-Term Exam	a1, b1, b2	Week 7	14%				
Oral exam	a1, a2, a3	Week 15	14 %				
Practical exams	c1, c2, c3	Week 15	14 %				
Written exam	a1, a2, a3, a4, b1, b2, b3, b4	Start of the sixteenth	18 0/				
		week	40 /0				
	Total						

6. List of references:

6.1. Course notes

-Notes approved by Math. Department.

6.2. Required books.

B. H. Flowers, An Introduction to Numerical Methods in C++, Oxford, 2000.

6.3. Recommended books.

B. Stroustrup, *The C++ Programming Language*, 3rd- *Edition*, Addison-Wesley, 1997. 6.4. Periodicals, Web sites, etc.

https://www.coursera.org/course/cplusplus4chttp://www.Sciencedirect.com http://www.Dbworld.com

https://www.edx.org/course/introduction-c-microsoft-dev210x

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096introduction-to-c-january-iap-2011/

7. Facilities required for teaching and learning:

Black board, white board and data show.

Course coordinator:	Dr. Galal El-Salamony, Dr. Mosab Hassan, Dr. Magdy Mostafa, Dr. Essam Mohsen, and Dr. Hebba El-Sayed Fathy
Head of the Department:	Prof. Dr. Reda Gamal Abd El Rahman Khaled

Date: 2022-2023

Course Specification 050Ur: Human Rights

A. Allination		
Relevant program:	B.Sc. in Geolog	gy Program
Department offering the program:	Department of	f Geology
Department offering the course:	Entomology De	epartment
Academic year/level:	First level	-
B. Basic information		
Title: Human Rights	Code: 050Ur	Year/level: First
Teaching Hours:	Lectures: 1	Tutorial: 0
	Practical: 0	Total:1 h/week

C. Professional information

A Affiliation

1. Course Learning Objectives:

The objective of this course is to enable the student to learn the Rights law Human Medicine dementia and sources. Also, study of international law, which aims to protect the individual.

2. Intended Learning Outcomes (ILOS)

a. Knowledge and understanding:

- On successful completion of the course, the student should demonstrate knowledge and understanding of:
- a1. Deals with human rights.
- a2. Explains the nature of the restrictions.
- a3. Describes what the collective rights

b. Intellectual skills:

On successful completion of the course, the student should be able to.

- b1. Analyzes of human rights.
- b2. Assesses the extent of the exercise of human rights in his social life.
- b3. Issued the provisions of a window on the importance of human rights

c. Practical and professional skills:

On successful completion of the course, the student should be able to.

- c1. Compares the application of human rights in Egypt in various fields.
- c2. Analyzes the social factors that stand in the way, without the actual application of human rights in our society.
- c3. Puts imagine the implications of the application of human rights to professional practices in the future

d. General skills:

On successful completion of the course, the student should be able to.

- d1. Deal with a computer and technology information in the field of specialization and view and search for information
- d2. Think and proficient in team work.
- d3. Mastered deductive reasoning

3. Contents

Торіс	Lecture hours	Tutorial hours	Practical hours
Introduction	1	-	0
The concept of human rights	1	-	0
The origins and evolution of human rights part1	1	-	0
The origins and evolution of human rights part2	1	-	0
The importance of human rights and the philosophical framework	1	-	0
Sources of human rights law part1	1	-	0
Sources of human rights law part2	1	-	0
Types of Human Rights medication and meals part1	1	-	0
Types of Human Rights medication and meals part2	1		
The rights of women and children special needs Own	1		
The human right to a healthy environment	1		
Human Rights and Ethics part1	1		
Human Rights and Ethics part1	1		
Revision	1		
Total hours	14	-	0

4. Teaching and Learning methods:

a E	a1.	Deals with human rights.	\checkmark		\checkmark			
vledge dersta	a2.	Explains the nature of the restrictions	\checkmark		\checkmark			\checkmark
Knov &Un ding	a3.	Describes what the collective rights	~					\checkmark
	b1.	Analyzes of human rights.	\checkmark					
ectual	b2.	Assesses the extent of the exercise of human rights in his social life.	\checkmark					
Intelle Skills	b3.	Issued the provisions of a window on the importance of human rights	~	\checkmark				
and ills	c1.	Compares the application of human rights in Egypt in various fields.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
al ional sk	c2.	Analyzes the social factors that stand in the way, without the actual application of human rights in our society.	~	\checkmark				
Practic profess	c3.	Puts imagine the implications of the application of human rights to professional practices in the future	\checkmark	\checkmark			\checkmark	
	d1.	Deal with a computer and technology information in the field of specialization and view and search for information						
ne Ils	d2.	Think and proficient in team work.	\checkmark					\checkmark
Ge ^j Ski	d3.	Mastered deductive reasoning	\checkmark					\checkmark

5. Students' Assessment Methods and Grading:

Tools:	To Measure	Time schedule	Grading
Mid-Term Exam	a1 to a4, b1 to b2	Seventh week	20
Oral exam	a2, b2, d1 to d3	Thirteenth week	20
Written exam	a1 to a3, b1 to b3, c1 to c3	Fourteenth week	60
Total			100 %

6. List of references:

6.1. Course notes:

* non

6.2. Required books:

* لغريب،محمد ميشال -حقوق الإنسان وحرياته الاساسية .د.م(:).د.ن) ... 1989 * Michael Boylan (2013). Natural Human Rights: A Theory

6.3. Recommended books:

أزمة حقوق الإنسان في الوطن العربي، 1989،مركزاتحادالمحامين العرب للبحوث والدراسات القانونية،1985-1989

* David Jason Karp (2012). Responsibility for Human Rights

6.4. Periodicals, Web sites, etc.

"الراصد : "شهرية . تصدر عن المشروع الاقليمي للوصل والمعلومات حول قضايا المرأة والمجتمع والتنمية فيمنطقتيالمشرقوالمغرب(. أعداد أخرى موجودة باللغتين الانكليزية والفرنسية على الكمبيوتر ".) الراصد . "عددأيار 2002

- * Journal of Human Rights Practice: Oxford Journals
- * Human Rights Law Review
- * Journal of Human Rights at the University of Connecticut
- * Canadian Journal of Human Rights
- * http://www.humanrights.com/
- * http://www.hrw.org/

7. Facilities required for teaching and learning:

* Lecture, Questions and discussion, Library and Self-Education

Course coordinator: Asst. Prof. Mohamed Afifi Head of the Department: Prof. Dr. Gamal El Qot Date: 2022-2023