

برنامج ماجستيرالعلوم في تخصص النانو تكنولوجي

Master degree of Science in Nanotechnology برنامج جدید بمصروفات

مقدم من كلية العلوم - جامعة بنها

 $(\Upsilon \cdot \Upsilon \Upsilon)$

١

توصيف برنامج دراسي

- اسم البرنامج : ماجستير العلوم في تخصص النانو تكنولوجي.

- طبيعة البرنامج: برنامج جديد بمصروفات (مفرد)
- القسم المسؤل عن البرنامج: كلية العلوم جامعة بنها.

-أهمية البرنامج

برنامج العلوم في تخصص النانو تكنولوجي هو برنامج متعدد التخصصات يقع في إطار كلية العلوم جامعة بنها ، يوفر البرنامج التميز الأكاديمي في مجال علوم النانو تكنولوجي في مجالات علوم الفيزياء والكيمياء والبيولوجي والطب والهندسة و هو يتألف من عدد من المقررات الأساسية وعدد من المقررات الاختيارية التي تغطي التخصصات المختلغة اللازمة لإعداد طالب متميز في مجال الصناعة والتعليم والبحث العلمي في مجال علوم النانوتكنولوجي. يمتلك طلاب هذا البرنامج مكوئا عمليًا قويًا في تحضير وتوصيف مختلف المواد النانوية وتطبيقاتها المختلفة.

يمد هذا البرنامج المتخصصين والأكاديميين بالقدرة اللازمة للمنافسة والتميز في علوم النانو تكنولوجى، و الذين يخدمون محليا وإقليميا في مختلف المعاهد والمراكز البحثية وايضا في مجال الصناعات المختلفة. أحد النتائج الرئيسية لبرنامج الدراسات العليا في علوم النانو تكنولوجي تتمثل في دعم ثقافة البحث والتطوير في التخصصات المختلفة.

رؤية البرنامج

أعداد خريجين في مجال علوم النانوتكنولوجي مؤهلين للمنافسة في سوق العمل على المستوى بالمحلى والإقليمي والدولي.

أهداف البرنامج

- ١- مواكبة التطور السريع في مجال تكنولوجيا النانو محليًا وعالميًا.
- ٢- أمداد الطالب بالمعلومات الضرورية في مجال التطبيقات المختلفة لعلوم النانوتكنولوجي.
 - ٣- تعزيز ثقافة البحث والتطوير في مختلف المجالات المرتبطة بعلوم النانوتكنولوجي.
 - ٤- تأهيل الخريجين لسوق العمل في مختلف القطاعات.

المعايير الاكاديمية للبرنامج:

تم اعتماد مجلس الكلية للمعايير الاكاديمية المرجعية (ARS) لبرنامج ماجستير العلوم في تخصص النانوتكنولوجي. لاعتمادها من الهيئة القومية لضمان الجودة والاعتماد.

مواصفات الخريج:

خريج برنامج العلوم في تخصص النانوتكنولوجي يجب ان يكون قادرا على:

- ١- تطبيق المعارف المتخصصة في مجال علوم النانوتكنولوجى التى اكتسبها خلال الدراسة بالبرنامج.
 - ٢- تحديد المشكلات المهنية واقتراح حلولا لها في اطار تطبيقات تكنولوجيا النانو.
 - ٣- إتقان المهارات المهنية واستخدام الوسائل التكنولوجية المناسبة في ممارسته المهنية.
 - ٤- التواصل وقيادة فرق العمل من خلال العمل المهنى المنظومي.
 - ٥- توظيف الموارد المتاحة بكفاءة.
 - ٧-الوعى بدوره في تنمية المجتمع والحفاظ على البيئة.

٢- المعايير القياسية العامة:

أ- المعرفة والفهم:

بإنتهاء دراسة برنامج ماجستيرالعلوم فى تخصص النانوتكنولوجى يجب أن يكون الخريج قادراً على فهم واستيعاب كل من:

- ١- فهم الظواهر النانوية ومعرفة التقنيات اللازمة لتوصيفها.
- ٢- التعرف على طرق تخليق ومعالجة وتصنيع الهياكل النانوية لاستخدامها في مخلتف التطبيقات.
 - ٣- النظريات والأساسيات والمعارف المتخصصة في مجال علوم النانوتكنولوجي.
 - ٤- المبادئ الأخلاقية والقانونية لممارسة المهنة في مجال علوم النانوتكنولوجي و تطبيقاتها.
- مبادئ وأساسيات الجودة في ممارسة الأعمال المرتبطة بمهنته في مجال تطبيقات علوم النانوتكنولوجي.
- ٦- تأثير الممارسة المهنية على البيئة والعمل على الحفاظ على البيئة وصيانتها وانتاج بدائل صديقه للبيئة.

ب- المارات الذهنية:

بإنتهاء دراسة البرنامج يجب ان يكون الخريج قادرا على:

- ١- تحديد وتحليل المشاكل في مجال التخصص وترتيبها وفقا لأولويتها.
 - ٢- حل المشاكل المتخصصة في مجال مهنته.
 - ٣- القراءة التحليلية للأبحاث ذات العلاقة بالتخصص.
 - ٤- إتخاذ القرارات المهنية في ضوء المعلومات المتاحة.
 - ٥- تحليل النتائج العملية في إثبات حجم المواد المحضرة.

ج- المهارات المنية:

بانتهاء دراسة البرنامج يجب أن يكون الخريج قادراً على:

- ١- تطبيق المهارات المهنية في مجال التخصص.
- ٢- كتابة التقارير العلمية المرتبطة بالمشكلات ذات الصلة بمجال التخصص.
- ٣- استخدام المفاهيم العلمية الصحيحة وتنفيذها بمهارة دقيقة للوصول إلى أفضل النتائج العلمية.
 - ٤- إجراء التجارب المعملية واستخدام الأساليب المناسبة لتطبيقها.
- ٥- استخدام الأسس النظرية لعلوم النانوتكنولوجي بأكثر الوسائل دقة وأماناً وكيفية توظيفها في مختلف المجالات.
 - ٧- اكتساب المهار ات العلمية المتعلقة بمجالات العمل.

د- المهارات العامة:

بإنتهاء الدراسة في البرنامج يجب أن يكون الخريج قادراً على:

- ١- استخدام علوم النانوتكنولوجيي في تطوير مهاراتة العلمية والمعلوماتية.
- ٢- التمكن من كتابة تقارير مبنية على اسس علمية سليمة تظهر الاستخدام الامثل للمواد النانوية.
 - ٣- استخدام الادوات والاجهزة والأنظمة والنماذج العلمية المختلفة في توصيف المواد النانوية.
- ٤- مناقشة وتحليل وابداء الرأى والتعرف على آراء الأخرين من خلال نتائج البحث والدراسة
 التى اجريت على مواد نانوية تم تحضيرها.
 - ٥- إستخدام المصادر المختلفة للحصول على المعلومات والمعارف.
- ٦- التمكن من عرض المشكلة وايجاد الحل المناسب لها بناءا على ممارسة خطوات التفكير العلمي.
 - ٧- العمل مع الاخرين في اطار فرق عمل.

مواد وأحكام اللائحة

مادة (۱) :

تمنح جامعة بنها بناءً على إقتراح مجلس كلية العلوم درجة ماجستير العلوم في تخصص النانوتكنولوجي.

مادة (٢) : مجلس إدارة البرامج

يتولى أدارة البرنامج مجلس أدارة يتم تشكيلة بناء على أقتراح أ.د/ عميد الكلية على النحو التالى:

- ١- أ.د .عميد الكلية
 - ٢- أ.د. وكيل الكلية لشئون الدرسات العليا
 - ٣- أ.د. منسق البرنامج
- عضوان من أعضاء هيئة التدريس من ذوي الخبرة والنشاط المرتبط بالبرنامج من داخل
 الكلية.
 - ٥- عضوان من إحدى المؤسسات الخارجية المرتبطة بتخصص البرنامج.
 - ٦- مسؤول من إدارة الدرسات العليا بالكلية.
 - ٧- مدير مالى للبربنامج.

هذا بالإضافة الى إداري يقوم بأعمال السكرتارية يتم تحديده من قبل رئيس المجلس.

مادة (٣) : اختصاصات ومهام مجلس إدارة البرنامج

يختص المجلس بإدارة الشئون التعليمية والأكاديمية والتنظيمية والمالية للبر نامج وتعتبر قراراته مستقلة يتم عرضها مباشرة على مجلس الكلية لاعتمادها ورفعها الى مجلس الجامعة لإقرارها ومهام مجلس الادارة كالتالى:

- ١- وضع السياسات التعليمية لتحقيق الأهداف الرئيسية للبرنامج.
 - ٢- اقتراح إعدا د الطلاب المقبولين بالبرنامج.
- ٣- أختيار الأساتذة المتميزيين للقيام بأعمال التدريس وضمان كفاءتهم المطلوبة لنجاح البرنامج
 - ٤- تشكيل لجان الاشراف على تسجيل الطلاب يالبرنامج.
 - ٥- أقتراح لجان الحكم والمناقشة بناء على توصية السادة المشرفين.

مادة (٤): شروط القيد:

- 1. حصول الطالب على درجة بكالوريوس العلوم أو مايعادلها من خريجي الكليات العلمية الأخرى.
 - ٢. موافقة جهة عمل الطالب على قيده لدر اسة الدرجة المتقدم لها.
 - ٣. الحصول على موافقة مجلس أدارة البرنامج، وموافقة مجلس الكلية على القيد.
- ٤. اجتياز الطلاب اختبار (مقابلة شخصية) لقياس قدرة المرشحين على مواصلة دراستهم بالبرنامج.
- مداد الرسوم الدراسية المقررة طبقًا للقواعد المنظمة لذلك. و لا تسترد الرسوم بعد موافقة مجلس الكلية علي القيد او التسجيل.
- تجوز لمجلس أدارة البرنامج تحديد عدد الطلاب المقبولين حسب الإمكانات المتاحة مع تطبيق قواعد المفاضلة بين المتقدمين.
 - ٧. استيفاء شروط القبول التي يضعها المجلس الأعلى للجامعات بالنسبة للطلاب الوافدين.
 - ٨. ألا يكون الطالب مقيدا بالدراسات العليا في أي كلية أو جامعة أخري.
- 9. لا يتم قبول الطلاب الذين مر على حصولهم على الدرجة الجامعية الأولى أكثر من خمس سنوات الا في حالة حصولهم على أحد الدبلومات في التخصص .
- ١٠. لا يتم قبول طلاب الدراسات العليا الذين ألغى قيدهم بسبب الغش أو ممن وقع عليهم
 جزاءات تأديبية.
 - 11. استكمال جميع المستندات المطلوبة من إدارة الدراسات العليا.
 - ١٢. موقف الطالب من التجنيد.

مادة (٥): مواعيد القيد والدراسة:

تقدم طلبات الالتحاق بالبرنامج لإدارة الدراسات العليا للسنة التمهيدية بالكلية في شهر أغسطس، وتعلن نتيجة القبول خلال الأسبوع الأول من شهر سبتمبر، ويكون قبول الطلاب بعد إستيفاء جميع المستندات وسداد الرسوم بعد اعلان نتيجة القبول. ويكون التسجيل لدرجة الماجستير بعد أجتياز السنة التمهيدية. ويجوز فتح فصل دراسي صيفي للطلاب المقيدين بعد موافقة مجلس الكلية وسداد الرسوم المقررة.

الدراسة بالبرنامج بنظام الساعات المعتمدة ويقسم العام الأكاديمي على النحو التالي:

- ١- الفصل الدراسي الأول: يبدأ من الأسبوع الأول من شهر أكتوبر ولمدة ١٥ أسبوع.
- ٢- الفصل الدراسي الثاني: يبدأ من الأسبوع الثاني من شهر فبراير ولمدة ١٥ أسبوع.

- ٣- الفصل الدراسي الثالث (الصيفي): لمدة ٨ أسابيع وفقا للمواعيد التي يقترحها مجلس أدارة البرنامج وبوافق عليها مجلس الكلية.
- ٤- الحد الأدنى لمنح درجة الماجستير هو سنه ميلادية من تاريخ موافقة مجلس الكلية على
 التسجيل.
- الحد الأقصى لمنح درجة الماجستير هو خمس سنوات ميلادية من تاريخ التسجيل مع مراعاة حالات وقف القيد ويجوز مد القيد بحد أقصى عامين بناءً على طلب المشرف الرئيسي وموافقة مجلس أدارة البرنامج ومجلس الكلية.

مادة (٦) أيقاف القيد:

يجوز لمجلس الكلية بناءً على اقتراح مجلس أدارة البرنامج، ولجنة الدراسات العليا بالكلية أن يوقف قيد الطالب لمدد لا تزيد في مجموعها عن ٢٤ شهراً، وأن يكون إيقاف القيد في المدة الأساسية وليس في فترات مد القيد وذلك لظروف يقبلها مجلس الكلية بعد سداد الرسوم الدراسية المقررة بناءً على طلب يتقدم به الطالب وذلك في المجالات الآتية:

- الوضع ورعاية الطفل: وعلى الطالبة أن تتقدم بطلب وقف القيد لرعاية الطفل مدعوماً بشهادة ميلاده.
- ٢. السفر إلي الخارج (المنح التدريبية والمهمات الرسمية)، وعلي الطالب إن يتقدم بطلب لإيقاف قيده قبل سفره (أو خلال الشهر الأول من سفره) في مهمة أو منحة دراسية مدعوماً بالمستندات الدالة على قيامه بالمهمة أو المنحة خلال شهر من عودته.
 - ٣. مرافقة الزوج أو الزوجة للخارج.
 - ٤. مرافقة الوالدين للعلاج بالخارج.
- المرض: وعلي الطالب أن يتقدم بطلب عند مرضه مدعوماً بشهادة مرضية معتمدة من الإدارة
 الطبية بالجامعة ومحدداً فيها فترة مرضه على ألا تقل عن شهر.
- ٦. حالات أخري يقبلها مجلس أدارة البرنامج ولجنة الدراسات العليا والبحوث بالكلية ويعتمدها مجلس الكلية.

وذلك بعد أخذ رأى المشرف الرئيسي على الرسالة ومجلس أدارة البرنامج، مع مراعاة عدم احتساب مدد إيقاف القيد التي وافق عليها مجلس الكلية من ضمن مدة الحصول على الدرجة أو فرص دخول الامتحان، كما يجوز لمن تم ايقاف قيده طلب استئناف القيد مرة أخرى بعد زوال سبب الايقاف وذلك بعد أخذ رأي المشرف الرئيسي على الرسالة ومجلس أدارة البرنامج.

مادة (٧) ألغاء القيد:

يقوم مجلس الكلية بإلغاء قيد الطالب لدرجة الماجستير في الحالات الأتية:

- 1. عدم اجتياز الطالب المقررات في السنة التمهيدية للماجستير خلال أربعة فصول دراسية على الأكثر، ويجوز أن يمنح الطالب الراسب في مادة أو مادتين فقط فرصة ثالثة وأخيرة وذلك بعد تسديد الرسوم الدراسية المقررة طبقا للقواعد المنظمة وبعد موافقة مجلس الكلية ومجلس الدراسات العليا بالجامعة.
- إذا انقطع عن الدراسة لمدة تزيد عن عام جامعي ويجوز أن يتم قيده كطالب مستجد ويستثني الطلاب
 الوافدين في حالة وجود عذر قهرى يقبلة مجلس الكلية والجامعة.
 - ٣. رفض لجنة الحكم الرسالة وتوصيتها بعدم منح الدرجة.
 - ٤. عدم منح الدرجة خلال المدد المنصوص عليها في اللائحة مع مراعاة حالات وقف القيد.
 - ٥. إذا تقدم الطالب أو السادة المشرفين بطلب لمجلس أدارة البرنامج لالغاء قيده.
- 7. عدم تسديد الرسوم الدراسية السنوية المقررة وذلك بعد توجيه للطالب انذار بعد مضى شهر من بداية العام الجامعي، ويتم إلغاء قيده بعد مرور شهر من تاريخ توجيه الانذار اليه ويجوز لمجلس الكلية إعادة قيد الطالب خلال العام الجامعي بعد سداد الرسوم الدراسية.
- ٧. إذا صدر عن الطالب تصرف يتعارض مع التقاليد والقواعد الجامعية، بعد التحقيق الجامعي
 المناسب.

مادة (٨) أعادة القيد:

يجوز أعادة القيد بعد التقدم الى أدارة الدراسات العليا بألتماس يقبلة مجلس الكلية والجامعة.

مادة (٩) شروط التسجيل لدرجة الماجستير بالبرنامج:

- أن يتقدم بطلب إلى إدارة الدراسات العليا لقيده لدرجة الماجستير بعد موافقة أحد الأساتذة أو الأساتذة المساعدين على الإشراف ويعرض الطلب على مجلس أدارة البرنامج لإعتماد الإشراف وتحديد مجال البحث والمقررات النظرية ثم يعرض الأمر بعد إستيفاء جميع المستندات على مجلس الكلية.
- ٢. يقوم الطالب بعمل ندوة علنية (Seminar) بالقسم المختص وتقديم خطة بحث موقعة من لجنة الاشراف، قبل موافقة مجلس أدارة البرنامج على تسجيل موضوع البحث مع موافقة جهة بحثية على قيام الطالب بإجراء الأبحاث بها بالنسبة للطلاب المقيدين من خارج الكلية.
- ٣. يشترط لتسجيل الطالب لدرجة الماجستير أن يقدم ما يفيد من المكتبة الرقمية بالجامعة بان عنوان رسالة الماجستير باللغتين العربيه والإنجليزية لم يسجل من قبل كنقطة بحث.

- ٤. يتم تسجيل موضوعات الماجستير طول العام بعد النجاح في المقررات التمهيدية.
- و. يجوز لمجلس أدارة البرنامج بناءً على طلب من المشرف الرئيسي أن يوافق على تعديل مجال البحث ولمرة واحدة فقط خلال دراسة الماجستير ويجوز أن يتم ذلك مع أو بدون تغيير المشرفين. ويعتمد ذلك التعديل من مجلس الكلية و مجلس الدراسات العليا والبحوث بالجامعة، و لا يتم تقديم الرسالة للحكم و المناقشة قبل مضي عام من تاريخ موافقة مجلس الكلية على التعديل.
- 7. يجوز لمجلس أدارة البرنامج بناءً على طلب من المشرف الرئيسي أن يوافق على تعديل عنوان البحث تعديلا جوهريا و لا يتم تقديم الرسالة للحكم و المناقشة قبل مضي عام من تاريخ موافقة مجلس الكلية على التعديل وذلك بما لا يخل بأقصى وأقل مدة للحصول على الدرجة، أما التعديل غير الجوهري فلا يترتب عليه أية آثار.

مادة (١٠) المواظبة:

يحرم الطالب من التقدم لامتحان أي مقرر دراسي لم يحقق نسبة حضور قدرها ٧٠٪ وذلك بعد إنذار الطالب ثلاث إنذارات (خلال ٦ اسابيع)، ويكون ذلك بناءً على تقرير من أستاذ المادة مع موافقة مجلس أدارة البرنامج ومجلس الكلية، وفي هذه الحالة يعتبر الطالب راسبا (ويحسب تقديره محروم) في هذا المقرر وتحسب عليه فرصة من فرص دخول الامتحان مع إخطار الطالب بذلك عن طريق الكلية.

مادة (١١) شروط منح الدرجة:

يوصى مجلس الكلية بناءً على توصية مجلس أدارة البرنامج ولجنة الدراسات العليا والبحوث منح درجة الماجستير في حالة استيفاء الطالب للشروط الأتية:

- ١. اجتياز الطالب بنجاح جميع المقررات الدراسية، والتكميلية ان وجدت.
- ٢. مرور سنة ميلادية على الأقل من بدء التسجيل (موافقة مجلس الكلية على التسجيل).
 - ٣. يتقدم الطالب برسالة متضمنة نتائج أبحاثه تقبلها لجنة الحكم.
 - ٤. أن يجتاز الطالب ما تقرره الكلية والجامعة من دورات تدريبية.
- و. يشترط لمنح الطالب لدرجة الماجستير في العلوم اجتياز بنجاح امتحان (التويفل) في اللغة الإنجليزية بحد أدنى ٥٠٠ درجة يحدده مجلس الكلية أو ما يعادله.
- 7. يقدم الطالب قبل التقدم بالرسالة لمجلس أدارة البرنامج ما يفيد نشر بحث واحد من النتائج العلمية التي تم التوصل إليها في رسالة الماجستير ويكون النشر في مجلة علمية متخصصة مفهرسة ومحكمة وتصدرها هيئة علمية بصفة منتظمة.

- ٧. البحث المقدم يكون بحثا كاملا Research paper وليست بحثا مرجعيا Review paper
- ٨. إذا توفى الطالب، قبل موعد المناقشة، وبعد أن قررت لجنة الإشراف صلاحية الرسالة للمناقشة و تشكيل لجنة المناقشة و الحكم عليها يجوز لمجلس الكلية بناء على اقتراح مجلس أدارة البرنامج منح الدرجة العلمية للطالب المتوفى من خلال مداولة تتم بين أعضاء لجنة المناقشة و الحكم.
- ٩. تمنح درجة الماجستير للطلاب الذين يجتازون مناقشة رسالتهم العلمية و لا يرصد التقدير أو
 المعدل التراكمي للدرجات في شهادة الماجستير.

مادة (١٢) الإرشاد الأكاديمي:

يحدد لكل مجموعة من الطلاب عند التحاقهم بالدراسة مرشداً أكاديمياً من بين أعضاء هيئة التدريس ويتولى المرشد الأكاديمي المهام التالية:

- ١- مساعدة الطالب في إختيار المقررات الدراسية.
- ٢- متابعة حالات التسجيل والإيقاف ونتائج الطالب.
- ٣- متابعة الطالب بشكل مستمر وحل المشكلات التي قد تظهر أثناء در استه.
 - ٤- متابعة السجل الأكاديمي للطالب

مادة (١٣) متطلبات الدراسة:

- 1) إجمالي عدد الساعات المعتمدة لنيل درجة الماجستير ٤٨ ساعة معتمدة.
- ۲) عدد الساعات التدريسية ۲۶ ساعة معتمدة (۱۳ ساعة اجباري + ۸ ساعات اختياري) موزعة على فصلين در اسيين (۱۲ ساعة معتمدة لكل فصل در اسي).
- ٣) يقوم الطالب بإجراء بحث في موضوع يحدده له المشرف الرئيسي ويعتمد من مجلس أدارة البرنامج ولجنة الدراسات العليا والبحوث ومجلس الكلية ويقدم الطالب رسالة علمية في موضوع البحث وتقدر لها ٢٤ ساعة معتمدة.

مادة (١٤) المقررات الدراسية:

يحدد مجلس أدارة البرنامج قبل بدء الدراسة المقررات الدراسية التي سيتم تدرسيها للطالب لكل فصل دراسي وذلك من بين قائمة المقررات الدراسية طبقا للجداول المرفقة. وتعتمد الخطة الدراسية للدراسات العليا من مجلس الكلية بعد عرضها على لجنة الدراسات العليا بالكلية.

مادة (١٥) معادلة القررات:

يجوز لمجلس الكلية بناءً على إقتراح مجلس أدارة البرنامج وتوصية لجنة الدراسات العليا والبحوث بالكلية إحتساب مقررات على مستوى الدراسات العليا في نفس التخصص سبق للطالب دراستها بالكلية أو في معهد علمي معترف به من المجلس الأعلى للجامعات والنجاح فيها خلال الثلاث سنوات السابقة للقيد بالماجستير، بشرط ألا تتجاوز عدد ساعات هذه المقررات عن ٨ ساعات معتمدة، على ألا تكون قد احتسبت له وحصل بها على درجة علمية أخرى، كما لا يجوز معادلة مقررات سبق للطالب دراستها في نفس الجامعة أو أية جامعة أخرى مر عليها أكثر من ثلاث سنوات.

مادة (١٦) النظام الكودى للمقررات:

تكود المقررات بوضع الرمز الكودي للتخصص العام كما هو موضح في الجدول المرفق يليه الرقم الدال على المقرر.

NanoChm	علم الكيمياء
NanoPhy	علم الفيزياء
NanoEng	علم الهندسة
NanoMed	علم الطب
NanoBio	علم البيولوجي

مادة (١٧) تقدير الدرجات والتقييم:

١. لا يعتبر الطالب ناجحاً في أي مقرر إلا إذا حصل على متوسط نقاط قدره ٢,٠٠ على الأقل.

٢. يحدد التقدير عدد النقاط التي يحصل عليها الطالب في العام في المقررات الدراسية وكذلك المعدل
 التراكمي للطالب طبقا للجدول التالي:

التقدير Grade		رمز التقدير	المكافئ الرقمي	الدرجة المئوية
			بالنقاط من ٤	
Excellent	ممتاز	A^+	4.000	100 >- 90
Excellent	ممتاز	A	3.667	90 >- 85
Very Good	جيد جدا	B^+	3.333	85 >- 80
Very Good	جيد جدا	В	3.000	80 >- 75
Good	ختد	B-	2.667	75 >- 70
Good	ختد	C ⁺	2.333	70 >- 65
Pass	مقبول	С	2.000	₹° >- 60
Fail	راسب	F	0.000	60 >- 0
Postponed	مؤجل	P	0.000	60 >- 0
Incomplete	غير مكتمل	IC	0.000	60 >- 0
Denial	محروم	DN	0.000	60 >- 0
Withdrawn	منسحب	W	0.000	60 >- 0

٣. يمنح الطالب إفادة بتقدير ات المواد، باللغة العربية أو اللغة الإنجليزية بناءً على طلبه.

٤. يحسب المعدل الفصلي والتراكمي للمقررات الدراسية كما يلي:

(أ) المعدل الفصلي (Grade Point Average (GPA) هو متوسط ما يحصل عليه الطالب من نقاط في فصل دراسي واحد ويقرب إلى رقمين عشريين فقط ويحسب كما يلى:

مجموع (حاصل ضرب نقاط كل مقرر فصلى × عدد ساعاته المعتمدة)

المعدل الفصلي =

حاصل جمع الساعات المعتمدة لجميع المقررات في الفصل الدراسي

(ب) المعدل التراكمي (Cumulative Grade Point Average (CGPA): هو متوسط ما يحصل عليه الطالب من نقاط خلال كل الفصول الدراسية التي درسها ويقرب إلى رقمين عشريين، ويبين في شهادة الطالب النقاط المكتسبة والنسبة المئوية إلى جانب التقدير العام للتخرج ويحسب المعدل التراكمي كما يلى:

مجموع (حاصل ضرب نقاط كل مقرر تم دراسته × عدد ساعاته المعتمدة) المعدل التراكمي = _______

حاصل جمع الساعات المعتمدة لجميع المقررات التي تم دراستها (ج) يتم تقييم الطالب في المقررات النظرية والعملية بناءً على العناصر التالية:

- فى حالة المقررات التى تشتمل على دراسة نظرية فقط يخصص (١٠٪) للإمتحانات الشفوية، (٢٠٪) للإختبارات الدورية، (١٠٪) عن التكليفات، وإمتحان تحريرى درجته (٠٠٪) من الدرجة الكلية للمقرر.
- فى حالة المقررات التى تشتمل على دراسة نظرية ودراسة عملية تطبيقية يخصص نسبة ٢٠٪ من درجة المقرر للإختبارات الدورية والتكليفات، ٢٠٪ من درجة المقرر للإختبارات الشفوية، ٥٠٪ للإمتحان التحريري النهائي.

مادة (١٨) النظم المالية:

تطبق قرارات مجلس الجامعة في كل ما يتعلق بالمصروفات والنظم المالية في هذا الشأن.

مادة (۱۹):

تطبق مواد الائحة الداخلية للدراسات العليا بالكلية ولائحة تنظيم الجامعات في كل مالم يرد ذكرة في هذة الائحة.

المقررات الدراسية لبرنامج ماجستير العلوم فى النانوتكنولوجى

يدرس الطالب عدد 8 ساعات من المقررات الاجبارية و 4 ساعات اختيارية في كل فصل دراسي أ- الفصل الدراسي الأول:

Semester 1		Course Title	Hours		
Code	Preq.	Obligatory: 8 Credit Hours	Lect.	Exerc./Pract.	Cred.
NanoChm 601		Nanomaterials, Synthesis, Processing and Applications	2	/3	3
NanoChm 603		Nanomaterials for Photocatalytic Processes and Environmental Application	2	/3	3
NanoMed 601		Nanomedicine	2	/	2
				Total:8	

Semester 1		Course Title	Hours		
Code	Preq.	Elective : 4 Credit Hours	Lect.	Exerc./Pract.	Cred.
NanoPhy 601		Advanced Quantum Mechanics	2	/-	2
NanoChm 605		Nanoelectrochemistry	2	-/-	2
NanoChm 607		Nanocomposite Science and Technology	2	-/-	2
NanoChm 609		Advanced Testing and Characterization of Materials	2	-/-	2
NanoBio 601		Nanobiomaterials	2	-/-	2
NanoMed 603		Nano-Diagnostics	2	/-	2
				Total: 4	

ب - الفصل الدراسي الثاني:

Semester 2		Course Title		Hours		
Code	Preq.	Obligatory: 8 Credit Hours	Lect.	Exerc./Pract.	Cred.	
NanpPhy 602		Solid-State Devices		-/-	2	
NanoChm 602		Materials for Energy Conversion and Storage	2	-/-	2	
NanoChm 604		The Chemistry of Nanostructures	1	-/3	2	
NanoEng 602		Nanoelectronics	2	/	2	
			Total: 8			

Semester 2		Course Title	Hours		
Code	Preq.	Elective : 4 Credit Hours	Lect.	Exerc./Pract.	Cred.
NanoBio 602		Bionanotechnology	2	-/-	2
NanoPhy 604		Advanced Nanophysics	2	-/-	2
NanoBio 604		Interaction of nanomaterials with biological systems	2	-/-	2
NanoMed 604		Nanomaterials in dentistry	2	-/-	2
NanoChm 606		Nanotechnology Applications in Construction Materials	2	-/-	2
NanoEng 604		Nanotechnology in Studying Damage and Failure in Structures	2	-/-	2
NanoChm 608		Nanosensors	2	-/-	2
				Total: 4	

محتوى العلمى للمقررات الدراسية

Course Code	NanoChem 601.				
Course Name	Nanomaterials, Synthesis, Processing and Applications				
Course Description	synthesis, properties, proce addresses top-down and bo from small particles and iso and consolidated bulk prod	prehensive introduction to nessing techniques and applicatiom-up approaches including plated clusters to nanostructucts, thin film and coatings. If gnetic properties will be introducted.	tions. The coverage g nanomaterials ranging red materials, multilayer Their chemical,		
Hours	lecture	Exercise/practical	Credit		
	2	- /3	3		

Course Code	NanoChm 603					
Course Name	Nanomaterials for Photocatalytic Processes and Environmental Applications					
		introduce nanomaterials for	•			
	phenomena, give fundamen	ital information on photocata	alytic reaction using			
	nanocatalysis and design of	photocatalytic processes an	d how the nanocatalysis			
	works as a practical tool for	r several environmental and	industrial applications. One			
Course	part of the course will conc	part of the course will concentrate on the preparation of nanocatalysis and their				
Description	characterization, and how their performance can be improved. The modelling of					
	the photocatalytic processes	s using nanocatalysis as well	as toxicology view will			
	give recent insights to the topic. The course will also contain information					
	on course announcement updated the applications of photo nanocatalysis both in					
	research and commercial level.					
House	lecture	Exercise/practical	Credit			
Hours	2	-/3	3			

Course Code	NanoMed 601			
Course Name	Nanomedicine			
Course Description	Introduction to nanomedicine; diffusion and drug dispersion; diffusion in biological systems; drug permeation through biological barriers; drug transport by fluid motion; pharmacokinetics of drug distribution; drug delivery systems; nanomedicine in practice: cancers, cardiovascular diseases, immune diseases, and skin diseases			
Hours	lecture	Exercise/practical	Credit	
Tiours	2	-	2	

NanoPhy 601				
Advanced Quantum Mecha	nics			
oscillator, the hydrogen ato Qualitative and approxima independent and timedepend and semiclassical methods.	om, electron spin and addition methods in quantum redent perturbation theory, var Applications are made to a	ion of angular momentum. mechanics, including time- iational methods, scattering tomic, molecular and solid		
lecture	Exercise/practical	Credit 2		
	Advanced Quantum Mecha Fundamental concepts of oscillator, the hydrogen at Qualitative and approximal independent and timedependent and semiclassical methods, matter. Systems of identical gas.	Advanced Quantum Mechanics Fundamental concepts of quantum mechanics oscillator, the hydrogen atom, electron spin and addit Qualitative and approximation methods in quantum independent and timedependent perturbation theory, var and semiclassical methods. Applications are made to a matter. Systems of identical particles including many el gas. Exercise/practical		

nouis	2	-	2	
Hours	lecture	Exercise/practical	Credit	
	Characterization and analysis techniques would also be addressed.			
Course Description	(e.g. sensors, fuel cells, b	synthesis of nanostructures	together with applications voltaic cells, reduction of	
Course Name	NT la dura la cui dura			
Course Code	NanoChm 605			

Course Code	NanoChm 607				
Course Name	Nanocomposite Science and Technology				
Course Description	This course is designed to provide fundamental understanding of emerging nanocomposite materials science and technology. The topical areas to discuss include synthesis of various nanoscale reinforcements, such as nanowires, nanotubes, and inorganic nanoparticles; fabrication and processing techniques of nanocomposites, dispersion of nanoreinforcements: interfacial adhesion; mechanical and functional properties of nanocomposites including gas/moisture barrier characteristics, electrical and magnetic properties, thermal properties, design and applications of nanocomposites.				
Hours	lecture	Exercise/practical	Credit		
	2	-	2		

Course Code	NanoChm 609		
Course Name	Advanced Testing and Characterization of Materials		
Course Description	Characterization of nanostructured using optical electron microscopy: Secondary ion mass spectroscopy (SIMS), Auger Electron Spectroscopy (AES), X-ray Diffraction and Differential scanning calometry for thermal analysis. Advanced testing techniques for characterization of the physical, optical, magnetic and mechanical properties of nanomaterials		
Hours	lecture	Exercise/practical	Credit
Tiours	2	-	2

Hours	lecture 2	Exercise/practical	Credit 2	
	and stimuli responsive biomaterials.			
Course Description	Design and synthesis of nanobiomaterials for their applications in drug and gene delivery. Fundamental biopolymer synthesis: functional group protection and deprotection; bioconjugation; protein pegylation design and synthesis of natural and synthetic non-degradable and degradable polymers, hydrogels, bio-inspired materials,			
Course Name	Nanobiomaterials			
Course Code	NanoBio 601			

Hours	2	-	2	
Hours	lecture	Exercise/practical	Credit	
Course Description	This course addresses the introduction to nano-diagnostics, microvesicles and nanovesicles in health and disease, Engineered nanoparticles for cancer diagnostics and therapy, Nanoparticles for medical imaging, DNA sequencing and DNA microarrays for medical diagnostics.			
Course Name	Nano-Diagnostics			
Course Code	NanoMed 603			

Course Code	NanoPhy 602		
Course Name	Solid-State Devices		
Course Description	This course focuses on nanoscale technology of various semiconductor. This course will make special emphasis on the properties of various types of Junctions (p-n junctions, heterojunctions, metal-semiconductor junctions). Short Channel effects and nanoscale phenomena will be emphasized throughout the course. Bipolar Transistors and optoelectronic devices will be discussed.		
Hours	lecture	Exercise/practical	Credit
	2	-	2

Course Code	NanoChm 602		
Course Name	Materials for Energy Conversion and Storage		
Course Description	Materials used in equipment for energy conversion and storage, with special reference to sustainable energy applications. Metallic and hybrid energy storage materials, Nanostructured materials for electrochemical energy conversion and storage. Thin films deposition and characterization. Porous hydrogen selective membranes. Inorganic and semiconductor materials for fuel cells and solar cells. Case studies in sustainable energy conversion and storage.		
Hours	lecture	Exercise/practical	Credit
Hours	2	-	2

Course Code	NanoChm 604			
Course Name	The Chemistry of Nanostructures			
Course Description	This course addresses the synthesis and chemical properties of the different categories of nanostructures such as carbon Nanotubes/nanorods/ etc, fullerenes, colloids, Self assembled monolayer structures (SAM), dendrimers and other macromolecules, oxide and inorganic nanotubes/fibers/rods/etc. For each category examples of applications would be giving to demonstrate the applicability of the properties discussed.			
Hours	lecture	Exercise/practical	Credit	
nouis	1	- /3	2	

Course Code	NanoEng 602		
Course Name	Nanoelectronic		
Course Description	Nano-electronic devices including resonant-tunneling devices, transistors, and single-electron transfer devices. Materials for nanoelectronics – Semiconductors – Crystal lattices: Bonding in crystal – Electron energy bands- Semiconductor heterostructuree- Lattice matched and pseudomophic heterostructures- Inorganic – Organic heterostructures- Carbon nanomaterials (nanotubes and fullernes).		
Hours	lecture	Exercise/practical	Credit
Hours	2	-	2

Course Code	NanoBio 602		
Course Name	Bionanotechnology		
Course Description	This course covers the use of various nanostructures for ultrasensitive detection of DNA, bacteria and viruses. Recent techniques for detection of single biomolecules that offers superior advantages over the conventional bulk measurements will also be presented. This course will also cover the use of different nanoparticles such as nanocrystals and gold nanoparticles for optical imaging, as hyperthermia agents for cancer therapy, and the development of smart drug delivery nanocarriers.		
Hours	lecture	Exercise/practical	Credit
110013	2	-	2

Course Code	NanoPhy 604		
Course Name	Advanced Nanophysics		
Course Description	Nanophysics fundamentals, physics of nanostructures, crystalline nanostructures, light-matter interaction on the nanoscale, quantum nanostructures, diffraction and scattering from nano objects.		
Hours	lecture	Exercise/practical	Credit
Hours	2	-	2

Course Code	NanoBio 604			
Course Name	Interaction of nanomaterials with biological systems			
Course Description	The convergence of nanotechnology and biology has led to the emergence of nanomedicine. biological systems such as proteins and DNA will create interfaces with the surrounding fluids that will govern their interactions with nanomaterials. The course cover the interaction of nanomaterials with biological systems. The course describes the nanoparticle interactions at the cellular level, nanoparticle interactions at a whole organism level — exposure routes, risks and benefits. Nanoparticles and their fate in the environment, health impact and risk assessment.			
Hours	lecture	Exercise/practical	Credit	
110413	2	-	2	

Course Code	NanoMed 604		
Course Name	Nanomaterials in dentistry		
Course Description	Nanodentistry will make possible the maintenance of near-perfect oral health through the use of nanomaterials. Nanodentistry includes: Nanodiagnostics and Nanomaterials		
Hours	lecture	Exercise/practical	Credit
nouis	2	-	2

Course Code	NanoChm 606			
Course Name	Nanotechnology Applications in Construction Materials			
Course Description	This course covers the use of nanotechnology in studying the particle shape, size and composition of conventional and advanced construction materials on a sub micro level. The correlation between the nano level characteristics and the mechanical properties as well as the durability of the materials is studied, Composition and arrangement of crystalline structures and chemical composition of materials are examined to yield materials of superior properties.			
Hours	lecture	Exercise/practical	Credit	
Tiours	2	-	2	

Course Code	NanoEng 604			
Course Name	Nanotechnology in Studying Damage and Failure in Structures			
Course Description	The course employs nanotechnology to study submieron cracks, flaws and damage indications in structures through examining the materials used. The course aims at providing early prediction of the life time of structures and nano-based prediction of the damage patters and hence around decision on repair intervention and the technique used.			
Hours	lecture	Exercise/practical	Credit	
	2	-	2	

Course Code	NanoChm 608		
Course Name	Nanosensors		
Course Description	This course addresses the fundamental principles of nanosensors, basic theory, and applications in industry, healthcare, and their diverse applications. It describes Carbon-nanotube (CNT)-based sensors and their uses with a range of analytes, including gaseous molecules, organic charge transfer complexes, proteins, DNA, and antibodies.		
Hours	lecture	Exercise/practical	Credit
	2	-	2